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ABSTRACT
\/;art I of this paper deals with the problem of designing a feedback
control for a linear infinite dimensional system in such a way that a given
quadratic cost functional is minimized. The essential feature of this work is
that:
a) it allows for unbnunded control and observation, i.e. boundary control,

point observation, input/output delaysj and

b) the general theory is presented in such a way that it applies to both
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parabolic and hyperboliJ-PB!s as well as retarded and neutral -PbBEe- s

~ ~
--In Part II the paper develops a state space approach for retarded systems
with delays in both input and output. A particular emphasis is placed on the

development of the duality theory by means of two different state concepts.

The resulting evolution equations fit into the framework of Part I. -
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| THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM FOR INFINITE
DIMENSIONAL SYSTFMS WITH UNBOUNDED INPUT AND OUTPUT OPERATORS

A. J. Pritchard* and D. Salamon**

1. INTRODUCTION

The control and observation processes for many dynamical systems are
often severely limited. For example there may be delays in the control
actustors and measurement devices. Also for systems described by partial
differential equations it may not be possible to influence or sense the state
of the system at each point of the spatial domain. Instead controls and
sensors are restricted to a few points or parts of boundaries. Modelling

such limitations results in unbounded input and output operators.

In the first part of this paper we develop a general theory for linear
quadratic control which allows us to consider such operators. We then show
how the theory applies to hyperbolic and parabolic partial differential
equations and neutral systems with output delays.

In the second part of the paper we develop a state space theory for
linear functional differential equations with general delays in the state,
inputs and outputs. Then we show how the results of the general theory may

be applied and hence solve the linear quadratic control problem for such

systems. o BV P
PART 1
Leiougceg

2. FINITE TIME CONTROL “o L3 ffoet iog

In & formal sense our basic model is f

i(t) - Ax(E) + Bu(e), x(to) . xo’ T lene “itlomy

2.1) . tritlisbiitty Qedag
y(t) = Cx(e), £ € €5 ¢t et ‘A el Aandfop T
. {AM '
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vhere u(-) ¢ L2 (:o.tl;U). () e Lz(to.:l:Y). U and Y are Hilbert
spaces and A is the infinitesmal generator of a strongly continuous
semigroup S(t) on a Hilbert space H. In order to allow for possible un-
bouudedneuA of the operators B and C, we assume that B ¢ i(U,V).

C ¢« t(H,Y) where W,V are Hilbert spaces such that
(2.2) W cHECV

with continuous dense injections. Of course, we interpret equation (2.1)
in the mild form which means that its solution x(t) is given by the variation-

of-constants formula
t
(2.3) x(t) = S(:-:o)xo + J S(t-0)Bu(o)do, to stst

%o

1

In order to make this formula precise and to allow for trajectories.in all
three spaces W,H,V we have to assume that S(t) is also a strongly

continuous semigroup on W and V and that the following hypotheses are

satisfied,
&
(H1) There exists some constant b > o such that J S(tl-o)lu(o)do e W
t
o
©
and ||J S(tl-o)Bu(o)da" s b |Ju)]| )
fo v L% (et 50)

for every u(.) ¢ Lz(to.tl;U).

(H2) There exists some constant ¢ > o such that

lles(-t ) x|| s c llx]l
° 2 v
L (eo.tl;Y)

for avery x €& W,

e - e




r. ) . v

i Remarks 2.1

(i) For every x € W and every u(.) € l.2 (to,:;U) formula (2.3) defines

a continuous function x(.) with values in W and the output function y(.) is
continuous l.n'.:h values in Y. Alternatively if x, € H (resp. V), then

x(-) is only continuous with values in H (resp. V) and y(:) € l.z (to.cl;Y).

Sometimes we will regard (2.3) as a dynamical system on the state space V.

(ii) 1In the following we identify the Hilbert spaces H,U snd Y with their g

duals. Then it follows from (2.2) by duality that

* *
V ¢ # ¢ W

with continuous dense embeddings. Moreover, S"(t) is a strongly continuous

* *
semigroup on all three spaces V ,H,W .,

(iii) The dual statements of (Hl) and (H2) are the following

* *
. (H1 ) For every x € V the following inequality holds

% % '
* [I8's (tl--)xllz ) llxﬂ* ‘
Lot ,t,50) W

12") For every y() e Lz[to,tl;‘l] we have

t
1 * ] .
J St )Cyar |l se |I:r<-)ll2
t .
) v L [to.tl,Y]
(see SALAMON [40]), -

(iv) The expression CS(t)x only makes sense when x ¢ W. However, if (H2)
is satisfied, then for any x € V we will use the expression CS(t)x,

to $ts tl' to denote the function in Lz(to.tl;i) which is obtained by
continuous extension of the operator W » x -+ CS(*)x ¢ Lz(to.tI;Y) tox ¢ V.

In the same manner we define B'S*(t)x, t, € €€, forx & W* when (H1) is

satisfied. In particular, the expressions CS(t)Bu and n*s*(:)c*y have a well L |
defined meaning as functions of t when (Hl) and (H2)are satisfied. 1
-1 -
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Associated vith the control system (2.3) is the performance index

J»(u) - <x(t1), Gx(:1)>v

(2.4) ¢

. f texce 12 + <u(e),mule)>_) ac
L, Y 17

vhere G € i(V.V.) is a positive semidefinite operator and R & i (u)

satisfies

<u,Ru> 2zllu ||2
U U

for soma £ > 0 and every u & U,
Now let us consider system (2.3) with the feedback comtrol

vhere F(t) € £(V.U) is strongly continuous on the interval [to.tll. Then we

may define a mild evolution operator d.(t,s) ¢ <), t;sastsc, via

t
(2.6) OF(c,s)x = S(t~-s)x + J S(t-o)nr(o)or(o,o)xdo
; s

(see CURTAIN-PRITCHARD [9]).

Remarks 2.2

(i) It follows from (2.6) thator(t.s) satisfies the equation
t

(2.7) OF(c,s)x-x -I QP(t.o)[A«tBF(o)]xdo, to s§sstsEt

s 1

for every x € DV(A) (the domain of A regarded as an unbounded, closed
operator on V), Equivalently the function $ — Qp(t.t)x & Vis

coutinuously differentiable on the interval [t ,t] for every x ¢ 1) V(A)

and satisfies




30,(:.3)):

(2.8) 32 == (t,8)[A+ EF(s)]x, t §8ECHC

(see CURTAIN-PRITCHARD (9]).

(ii) It is well known that the evolution operator satisfies the equation

t

(2.9) 0‘.(:.:): = S(t-s)x + I or(c.q)nr(a)s(a-s)xda
s

!ortosnstit and x € V,

1

(see CURTAIN-PRITCHARD (9]).

(iii) Often we will consider the feedback system with san additional forcing

input v(.) so that

(2.10) u(t) = P(t)x(t) + v(t)

in (2.3). It follows esasily from (2.9) that - for this control function - the

corresponding solution of (2.3) is givea by

t
(2.11) x(t) = Oy(t,to)xo +I Or(c,a)sv(a)da. t,etse

%

1.

(iv) Using (2.6) it is easy to see that 01,(1:..) is also a strongly

continuous evolution operator on W and V and has the following properties.
(H1') Thereexists a constant b' > o such that

t
||I 0 (EBu@dal] < b [Jucl]

for every u(-) ¢ Lz(to,tl;u) and every t € [to.tI].

(32') There exists a constant c' > o such that

I cop(e,m)xll sc izl
v
L (l.tl;‘l)

for every x & W and every s € [t,t].




The dual properties are the following

(ﬂl") " The inequality
*
[EXWCPH] $v' x|
t3(e,.t50) W

*
holds for every x € V and every t ¢ [to'.tl].

(nz"‘) The incquality

&

||I ¥ @,acty@arl s e Lyl
s F *

v L2 (s, 8,57)
holds for every y(°)é¢ Lz(to.tl;‘!) and every s ¢ [to.tll.

Using the condition (H2') and its dual we can define a strongly continuous

operator 2, (t) ¢ L, v, by

Pr(t)x - 0;(t1,t)G0F (tl,t)x

(2.12) t
1 x *
. J o3, [C oo (DRF (O]9, (r,t)xde
t

for' to st s' tl and x € V. Then the cost of the feedback control (2.5)

corresponding to an initial state x, € Vis given by

(2,13 J(up) = <xBo(e)x>
(A

If the initial state is in H, then this expression can be interpreted via the

inner product in H.
A formula comparing the cost of an arbitrary control u(.) ¢ Lz(to.tl:U)

with the cost of the feedback control (2.5) will play an important role in

- our analysis. In the proof of this result we will need to interchange some

integrals. At soma points this becomes a delicate problem since we will




have to operate with terms like COF(t.n)B. In order to make the results

precise, we need a third hypothesis,

(H43) Suppose that
Z = {)V(A)c w

with a continuous, dense embedding where the Hilbert space Z is
endowed with the graph norm of A, regarded as an unbounded, closed

operator on V.

This assumption is not very restrictive. It is satisfied by all known
examples of systems which satisfy (Hl) and (H2) if the spaces W and V are

chosen appropriately. In the following we summarise some important consequences

of (H3).

Remarks 2.3

(i) If (H3) is satisfied, then A can be regarded as a bounded operator
from Z into V. Correspondingly A* becomes a bounded operator from v into
z*. On the other hand A can be restricted to a closed, densely defined
operator on Z, It's adjoint in this sense coincides with the above operator
AMivr . 2? (SALAMON [40, Lemma 1.3.2]) and moreover
Q. ah ¢ Dar -
v z*
(ii) It is a well known fact from semigroup theory that
t

T, x = Jos(s)i&ds 3 ‘DV(A) -z

for every x € V and every t 3 o. If (H3) is satisfied them Tt is a strongly

continuous family of bounded, linear operators from V into W. It is easy

s s * F I T .
to see that the adjoint operator 'rt & éL(w V') is given by




t

Tt*x - Jos.(l)xda € sua(A') C v

!orxg"*andt;o.

(iii) 4if (81), (H2) and (H3) are satisfied then the following equation
holds for every u € U and every t 2 ©

t t
cJ S(s)Buds = CT Bu = I CS(s)Buds.

° o
This seems like a trivial fact, however, we were not able to establish this
ideantity without assuming (H3). Note that the LHS of the above equation
has to be interpreted in terms of (Hl) and the RHS in terms of (H2). For
establishing the equation one must u{:proxiutc Bu € V by a sequence of
elements in W. Then the term on the LHS will not converge in general unless

range Tt c W

Lemma 2.4

Suppose that (H1), (H2), (H3) are satisfied, let F(t) € i(v.U).
L, s ¢t P4 tl’ be strongly continuous and let OF(:,c) € dw) L) be
defined by (2.6). Moreover, let u(-) Q'Lz(:o.tl;u) and y(*) € Lz(:o.tl;u)

be given., Then

t &1 tl t
(2.14) J J <Ce_(t,s)Bu(s),y(t)> dt d--J <CJ ¢_(t,s)Bu(s)ds,y(c)> dt
e’ s ¥ Y t, ‘to F Y

vhere the first expression must be interpreted in terms of (az‘) and the

second in terms of (Hl').

Pronf First note that, by (2.6) and (Hl),

0,0 - (=) & Lov,0.




Hence it is enough to establish the desired equation with 0,(:,:) replaced

by S(t-s).

Secondly, let us assume that u(-) ¢ Cl(to.tl;u) and u(to) = 0, Then

t
x(t) = I 8(t-s)Bu(s)ds
o
t.s )
- J J S(t-s)Bu(o)daods
%%
t t
- J J S(t-s)Bu(c)dsdo

. Tt_aBu(o)dc
° .

Analogously, we get

t

1 !
z(s) = J s*(:-.)c*y(:)dcs-J LS TOTY
L] s

for y(-) & Cl(t .t ;¥) with y(t,) = 0. This izplies
&
J <Cx(t),y(t)> dt
¢ Y
o
- <CT___Bu(s),y(t)> ds dt
ele 7O Y
t1 51
- <i(s),BT" _ cty(r)> 4t
t’s e u
tl'l
- J <a(s),B" I ™ C*y(1+s)dr> ds
t o 1 U

o
‘1 tl-l

- - I <u(s),B" I r:c*i(fn)dv ds
e, ° U

@
?




5
- J <u(s) ,B*z (s)>uds

%o

Both sides of this equation depend continuocusly on u(-) ¢ Lz(:o, tl;U) and

y(-) € l_-z(co,tl;l'). Moreover

&
J <u(s),B*z(s)> ds
t u
b 31
= J <Bu(s), I S*(t-s)C*y(t)dD *ds
. v,V
° .

-J J <CS(t~s)Bu(s),y(t)> dt ds.
Y

This proves the statement of the lemma. €22

Now we are in the position to prove the desired comparison formula for the

feedback control (2.5).

Lemma 2.5
Suppose that (H1), (H2), (H3) are satisfied, let F(t) € L(V,U) be

strongly continuous on the interval [to,tl] and let Pp(t) e 2,V ve
defined by (2.12) and (2.6). Then the following equation holds for every

x € V and every u(*) € Lz(t t,;U)

o’ 1}
J(u) - <x°,PF(t°)xo> .
vV

I‘.l

(2.15) -I <n"n"vr(c)x(':)+u(c),n[a"n*py(:)x(:)m(:)1>a:
t

-I <n-ln*PF(t)x(thF(t)x(:),R[R-IB*PF(:)x(t)+F(:)x(t)]>dt
t

vhete x(t), to s tg ) is given by (2.3).

- 10 -




Proof We give a proof of (2.15) for the case x, & W and u(-) € cuo.:l;u). '

Let x(t) be the mild solution of (2.1) given by (2.3) and define ' i

v(t) = u(e)-F(t)x(t) for t 2 t,e Then, by Remsrk 2.2 (iii)

V

c |
z(t) = Lo OF(:-s)Bv(s)ds - x(t)-QF(t'.r.o)xo %
I

for L, s € - let us first apply Lemma 2.4 to the functions.

(ve), e stss,
v’(t) - °

09 tO s t<s, !
Y (0 = ;

cor(:,s)sv(s), stse

and integrate over s. Then we get

1 "
J [ I <C°F(t,s)z(s),COF(t,s)Bv(s)>d:]ds |
t, s .
f
tl tl t !
- I [ J <CI OF(t.o)Bv‘(a)da.y.(tht] ds i
t, t, ts |
-] [ I j <Co (t,0)Bv (0),y,(t)>de da] ds , by (2.14) .
t, t, o {
t1 8 tl ) ,
- J [ ( I <COF(t.a)Bv(a),COF(t,s)Bv(s)>dt]dc ds
to to s
tl tl tl

- J ( I I <COF(t,a)Bv(o).COF(t,s)Bv(s)>dt ds] do
g




DY t
- J j <c0F(:.a)sv(o).c J 0’(:.5)Bv(s)ds>dt do
g

to g
= ] J <COr(t.s)Bv(s).CI Or(:,o)Bv(c)dvdt ds
4 ] ]
o

and hence, again using Lemma 2.4,

.5
2!&] I <c0F(t.s)x(|).cor(t.s)Bv(5)>dtds
t s
(-]
t tx
= 2Re ]: I. <C°P(t"o)xo’c°r(t")‘V(’)>d‘d‘
[-]
:1 tl 8
+ Re J I <CJ or(t,a)Bv(o)do.COr(t,s)Bv(s)nl: ds
t° s t
t ot t
+ Re J J <CI op(t,o)Bv(o)da,COF(t,s)Bv(n)>dt ds
lo s s
= 2Re I <coF(:.:°)x°,cJ Or(t.a)lv(l)ds>dt
co Co
6
+ Re J I <Cz(t),C0P(t,s)Bv(s)>dt ds
t s
[-]
5
= 2Re I <COF(t.t‘;)xo.Cz(:)>dt
tO
B
* I <Cz(t),Cz(t)>de
t
tl ) tl ,
- I I Cx(t)"Y de - I I co(:.:o)xouyd:.
t €

- 12 -
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Analogous identities can be derived in a more straightforward way when

c*c ¢ L(W,W*') is replaced by ¢ ¢ L (V,v*) or F ()RF(e) € L (vV.v™),
respectively. This implies
Y
2 Re J <Pr(o)x(|),lv(a)>ds
t
()

t
. 1
= 2Re L <o,(:l.i)x(.),cor(zl.-)av(.)m

t t

1
j <00r(t.l)x(l),COP(t,l)Dv(l)Nit ds
t, '8

L
1 "1

+ 2 Re I J ‘F(C)OF(t.l)x(a).R-F(t)OF(t.:)Bv(s»dt ds
to [

= <x(t)),6x(e,)> - <o (r),t )x GO (t,,t )x >

tl’ tl
+ J <Cx(t),Cx(t)>de - I ‘c'r("‘o)"o'c'r("‘o)"o’“

t, L

tl tl
* I <P(t)x(t),RF(t)x(t)>de - J <F(t)0r(t.to)xo.li‘(t)or(t.to)x°>dt'.

to =°

Now the LUS of (2.15) equals




Theorem 2.6

J(u) - <x°.l’r (to)x°>

1 Y
- <u(t) ,Ru(t)>dt - J <F(t)o_(t,c )x ,RF(e)o_{(t,c )x >dt
Lo t F o' o ¥ o' o

t

1
. I <Cx(t),Cx(t)>de - Jt <Cor(t.to)xo.cor(t.to)x°>dt
e ("]

- <x(t1). Gx(t1)> - <0P(t1.to)xo.GOF(tl.to)!‘,’

‘1 tl

- I <u(t),Ru(t)>dt + 2 Re J ﬁP'(t)x(t).Bv(t)>dt

t
to °

&
- I <F(t)x(t),RF(t)x(t)>de .

t
(-]

1t is easy to see that the final expression coincides with the RHS of

(2.15). This proves Lemma 2.5. &2

We are now able to prove the main result of this section

Let (H1), (M2) and (43) be satisfied. Then there exists a uuic!uc
»
strongly continuous self adjoint, non-negative operator P(t) € i(v.v )

to £teE tl. solving the integral Riccati equation.

P(t)x = o’(:l.:)co(:l.e)x

4
1
(2.16) . I 0" (s,0) (CCcor(a)nn 8 p(s)] @ (s,t)xas
t .




Py

for x € Wandt stg¢t vhere ¢(s,t) = Or(l.t) is the evolution opsrator
-] *

defined by (2.6) with F(t) = - R 'B"P(t) ¢ £ (V,U). Furthermore there is a

unique optimal control which minimizes the performance index (2.4) subject

to (2.3). This optimal control is given by the feedback control law

2.1 up(®) = - R IB"P(e)x(e)

and the optimal cost is

(2.18)  3u) = <x ,P(E )X > .

Proof, We regard equation (2.16) as a fixed poiat problem which is to be

solved by iceration. Let us define the sequence Plr. () ¢ .t(v;v') recursively

through

.Po(:) =0

it B
P (t) = Pp(t), F(t) = -R B P (0

<
for ke N andtOSt.tll

, where PF(t) is given by (2.12). Let us also define

8 (00) = 08,00, F() = - K 8'R (6),

so thdt

&
Pk’l(t)x - ok(tl' t)cok(tl' t)x

(2.19)
t
. J ! 0" (s,t) [C coP, (5)BR™IB"E, (s)] @ (s,t)xds
¢ kU k k 2

holds for €, 5 t ¢ t, and x ¢ W. Applying Leams 2.5 to F(t) = - K '3 _, ()
and “’k(-t) - - R-l

n"pkmx(:) , we obtain’




“o"kﬂ. (:o)x°>

-] ("k)

‘@ <x P (t )x >

(z.zo) o'k 070
ot

- L <[p, ()-P _1(t)]x(t),n-ll.[l’k(t)-l’k_l(t)]x(‘r)>dt
[-]

§ <x°.l’k(t°)x°>

for k ¢ IN and x_ € V. Thus the sequence <x ,P (t )x > s k & IN, is
o , . o'k 0""0 *
v,V

monotonically decreasing and positive. Hence Pk(to) converges strongly to
) .
a non-negative, self adjoint operator P(t)) & & (V,V.) (cf. RATO [25 , p.4S4,

Theorer 3.3]). The same conclusion is valid for every t ¢ [to'tll since t, st

can be chosen arbdbitrarily.

Moreover, (2.20) shows that the functions Pk(t)x. tsese, ke N , are
uni formly bounded in v*. Hence the limit function P(t)x, to s ts tl' is
strongly measurable in v and bounded. Therefore we can introduce a strongly
continuous evolution operator ¢(s,t) = Op(s,:) ¢ i(v) which is defined by

(2.6) with F(t) = ~R™1B*(t).

Our next step is to prove that bk(a,c)x € V converges for every x ¢ V
to 9(s,t)x and that this convergence is uniform on the domain t s s ¢ tl

(t fixed). For this sake let us consider the identity

¢(s,t)x - Ok(a.t)x

- J s(--r)nn'ln"[rk(r)-r(r)] o (1, t)xdt
t

- I s (l-r)BR-IB.Pk () [¢(x, :)x-ok (t,t)x]de
t




and apply Gronwall's lemma. Then the desired convergence of Ok(n,t)x

follows from the pointwise strong convergence of Pk('l') to P(tr) together

vith the dominated convergence theorem,

As & consequence of this convergence result we obtain a uniform bound
on || Qk(.'.g)" ™ and thus on || ¢, (s,0) ]| 200 fork ¢ Mandessse,.
This allows us to apply the dominated convergance theorem to formula (2.19)
and hence P(t) satisfies the integral Riccati equation (2.16). Finally, it
follows cuiiy froui (2.16) together with the strong comtinuity of #(s,t) in
both variables and in both spaces V and W chat the operator P(t) ¢ & (v,v*)

is strongly continuous on the interval [:o,tll. Thus wve have proved the

existence of a solution to (2.16).

In order to prove the uniqueness for the solution of (2.16) together with

the statements on the optimal control, let us assume that P(t) ¢ 1(v,v") is

any strongli continuous, non-negative solution of (2.16). Moreover, let

x, € V, u() ¢ Lz(:o.tl;u) be given, let x (t) € V be the corresponding

solution of (2.1) which is given by (2.3) and define v(t) = u(t) + R 1B"P()x(t)
for -to £tsg tl. Then it follows from Lemma 2.5 that
&
(2.21) J(u) = <x°.l’(t Jx > + J <v(t),Rv(t)>dt.
o 0 t
(-]

Hence the optimal control is unique &nd given by the feedback law (2.17) and
the optimal cost is given by (2.18). Moreover, we conclude from (2.21) that
<x°.l’(t°)x°> - <x°.f’(t°)x°> for any two non-negative solutions P(:),s(t) € i (V.V')

of (2.16) and any x, € V. Since t, § ¢ can be chosen arbitrarily, this proves

1
the uniqueness of the solution to (2.16).

The following result shows that the integral Riccati equation (2.16) can be

converted into a differential Riccati equation.




Proposition 2.7

Suppose that (H1), (H2) and (H3) are satisfied and let P(t) e 3_ (V.V.) be
s non-negative, self adjoint, strongly continuous operator on the interval
[to.tll. Moreover, let the evolution operator ¢(s,t) = Or(t,t) € ,f (V) be
defined by (2.6) with F(t) = - R-IB*P(t). Then the following statements are

equivalent.

(i) Equation (2.16) holds for every x € W and avery t € [to.tll.

(ii) For every x € Wand every t ¢ [co.tll the following equation holds
5

(2.22) P(t)x-O.A(tl.t)GS(tl-:)x *I o'(-.;)c'cs(s-:)xd-'
t

(ii1) For every x € W and every t ¢ [t ,t,] the following equation holds

P(t)x = s' (tl-t)CS(tl-:)x
&

(2.23) 0J s" (s-e) [C"C-P (s)BR™18"P (s)) S (s-t) xds
3

(iv) For every x € Z the function P(t)x, to sesey is continuously

differentisble with values in z* sud satisfies the differential Riccati eg' uation

(2.2631) T‘: P()x + A"P(t)x + P(t)Ax = P()BR IB"P(t)x + C'cx = 0

(2.24;2) P(tl)x = Gx

Proof The equivalence of the statements (i), (ii) and (iii) can be established
in a straightforward way by using the formulas (2.6) and (2.9). We will omly

show that (i) implies (ii). Imn fact, (i) implies that the following equation

holds for every x € W and every t £ [to.tll




P(t)x
5

* * *
= ¢ (t,,065(c,~t)x + I ¢ (s,t)C CS(s~t)xds !
t s

|
|
%
|
|

&

. o*(:l.:)c I #(t),T)BF (1)S(T-t)xdr
t

tl s

" )
+ I ¢ (s,t)C C J ¢(s,T)BF(1)S(1-t)xdrds
t t
t

1, *
+J ¢ (s,t)F (s)RF(s)®(s,t)xds
t

- * P
where F(t) = =R lB P(t) € t(v.u) for :o gte tl. The last three terms on !
i

the RHS of this equation cancel out since

&

J o (s, t)P* (s)RF(s)¢(s,t)xds
t

t
1
- ] ¢" (s,t)F" (s)RF (s)S(s~t)xds

t
J
(
=7 ¢*(n 9(P(D) [2F(1)S(r-t)x]
t

1
J 0*(8.t)1’* (s)RF(8)®(s,T)BF (t)S(T-t)xdtds
t ‘¢t

L3

- J o*(s,T)F* (s)RF(s)0(s, ) [BF (1)S(r-t)x]ds}dt :
T '

!
t i
1

--I o* (t, :)0’~ (tl.t)GO(tl.t)BF (r)S(t-t)xdt
t

I - I 0*(':,:)] 0*(0,T)C*CO(O,t)“(t)S(t-t)xdldr
? t T
|
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Applyi‘ng Lemma 2.4 to the final term, we obtain the desired cancellation.

Now we prove the equivalence of the statements (iii) and (iv). WNote that

the equation

<CS(t)z,CS(t)x> - <Cz,Cx>
(2.26) t

- J [<CS(s)Az,S(s)x> + <CS(s)z,CS(s)Ax>]ds
[ ]

holds for all x,z QD“(A) and every t 2 O, It follows from (H3) and'(l-lz) that
both sides of this equation depend continuously on x,z ¢ Z = QV(A) ¢ W and
that 8 z(A) < 9“(A) C Z. Consequently 3 "(A) is dense in Z and hence (2.26)

holds for all x,z ¢ Z.

From (2.26) we see that the function <z,P(t)x> - defined by (2.23) - is

continuously differentiable on the interval [to.cl] for all x,z € Z and satisfies

the equation

d
c <z,P(t)x>

- - <s(:1-:)Az.cs(c1-c)x> - <S(tl-t)z,GS (tl't)Ax>

~ <Cz,Cx> + <z,P(t)BR 'B*P(t)x>
A
- I [<CS(s-t)Az,CS(s~t)x> + <CS(s~t)2z,CS(s-t)Ax>]ds
t

%

+ I <S(s-t)Az,P (s)nk.ln*l’ (s)S(s-t)x>ds
t
. tl
* I <S(s=t)z,P(3)BR 'B*P(s)S (s-t)Ax>ds

t

= = <Az,P(t)x> - <z,P(t)Ax>

- <«Cz,C> + <2,P(t)BR \B*P(t)x>




3.

strong derivative of P(t), t,sese regarded as an operator in i z,z2%). &2

This implies ’

<g,P(t)x> .
2,2

D1

o (5,6x ¢ J (A*P(s)x+P (8)Ax-P(s)BR 1B"P(s)x+C¥Cx]ds>
t 2,2

ap® hence (2.24;1). Thus we have proved that (iii) implies (iv).
Conversely, let us assume that P(t) satisfies (2.24). Then the following
equation holds for every x € Z and every t ¢ [to.tll
8% (¢,-£)65(¢,-t)x - P(t)x ,
tl "
- J 3‘: s* (s-t)P(s)S(s-t)xds ’ _
t
3!

- I s* (s-t) [l.’(l)#A*P(.)H’(s)A]S(s-t)xds
t

t
1

- J S.(l-t) [C*C-P(s)BR-lB*P(s)]S(s-t)xds
t

where the integral has to be understood in the Hilbert space z* and B(t) is the

1

INFINITE TIME CONTROL

In this section we consider the control problem of minimizing the perforﬁance

index

2
(3.1) J(w) -J Ul vyl + <u(e),Ru(e)> ]de
[~) Y u

vhere y(t) is again the output of (2.1) with to =0, i.e.




t

3.2) y(t) = CS(t)x° +C I S(t-s)Bu(s)ds, t 2 O.
o

Por this infinite time problem it is not clear that the cost will be finite

for any control input u(*) ¢ Lz(o.-;U). So we add this as another hypothesis.

(H4) For every x, € V there exists a u () e Lzlo,-;U] such that J(ux )<=,
° o

We will derive the optimal control via the solution of an algebraic Riccaei

equation which is actually the stationary version of (2.24). For this sake we

consider the finite time control problems of minimizing the cost functionals.

T
2
(3.3) | I = Jo[lly(t)llY + <u(e) ,Ru(e)> Jde

subject to the constraint (3.2). The corresponding Riccati operator will be

denoted by P.r(t) é f(v,v*) and satisfies the equation

(3.4) P (t)x
T T

- J s*(s-t)[C*C-PT(S)BR-IB*PT(s)]S(s-t)xds
. .

for every x € W and every t ¢ (0,T].

Lemma 3.1

P.h‘(c) - Pr(tﬂ:), Osts$T~a

Proof
The operator P.r(:«:) satisfies the equation
r .
* *® -1 &
PT(:oa)x - J § (s-t-a)(C c-r,r(s)nn B P,r(s)]S(s-t-a)xds
t+a

T-a

- J s*(s-t) [c’c-l’r(sm)lk-ln*?r(am)]s(s-t)xds
t




for x ¢ Wand 0 £ £t $ T - o. Thus the statement of the Lemma follows from
the equivalence of (2.16) and (2.23) (Proposition 2.7) together with the

uniqueness result (Theorem 2.6), \ZZ3

We will derive the solution of the algebraic Ricc-ti equation as the limit

of the solutions to integral Riccati equations as T goes to infinity. For this '

we need the following preliminary result which is a special case of Proposition

2.7.

Corollary 3.2
Suppose that the hypotheses (Hl), (H2) and (H3) are satisfied and let
P ¢ :[(v,v") be a non-negative, self adjoint operator. Moreover, let
Splt) € L) n LW be the strongly continuous semigroup which is generated
bf A-BR lg*p: a v(A) +V, i.e. Sp(e) satisfies the equation

t
(3.5) Sp(t)x = S(t)x - J S(t-l)BR-lB*PSp(s)xds

[+]

for x € Vand t 2 o. Then the following statements are equivalent.

(i) For every x € W and every t 2 o

Px

*
Sp(:)PSp(t)x
(3.6)

+

f sh(s) (c"c+pBR™IB*P]S, ()xds
0o

(ii) For every x € W and every t 2 ©
t

s;(:)PS(t)x . J sp (8)C"CS () xds
-]

(3.7) Px

(iii) For every x € W and every t 2 o

s*(e)Ps(t)x
t

Px

+

I s*(s) [C"c-PBR 1B P] S (s)xds
o




(iv) For every x € 2 the following equation holds in z*

1

(3.9) A*Px + PAx - PBR 'B*Px + C*Cx = 0.

Now we are in the position to prove the main result of this section.

Theorem 3.3
Let (Hl), €H2) and (H3) be satisfied. Then the following statements hold.

(i) The hypothesis (H4) is satisfied if and only if there exists a non-negative

self adjoint solution P € L(V,v*) of (3.9).

(ii) If (H4) is satisfied, then there exists a unique optimal control

up(') € Lz(o,-;U) which is given by the feedback law.

1

(3.10) u, (€ = - R "B*Px(t), t o0,

where P € i w,v*) is the (unique) minimal solution of (3.9). Moreover, the

optimal cost is given by
(3.11) J(up) = <x°,Px°>.

(iii) If (H4) is satisfied, then the minimal solution P € £(V,V") of (3.9) is
*
strong limit of PT(O) € £ (V,V ) as T goes to infinity where Pr(t) is defined

by (3.4).

Proof

First recall that the optimal control of the finite time problea on the

1

interval [0,T] is given by u (t) = R B*P (e)x(t), O <t s T, and the optimal
Yr T

cost by JT(uT) - <xo.PT(o)x°> (Theorem 2.4). So (H4) implies that

<x°,PT(o)x°> - JT(uT) < JT(uxo) $ J(ux°)< -

and thus there exists a limit of the increasing function <x°,PT(o)xb>,T 3 0, for

-2 -




every x ¢ V. Hence there exists a non-negative, self adjoint operator
Pe f(V,V*) which is the strong limit of PT(O) (KATO {25, p.454, theorem 3.3]).

By Lemma 3.1,

(3.12) Px = s-lim P (t)x & vt

To+=
exists uniformly in t on every compact time interval. Making use of formula
(3.4), we obtain
Px = lim P,r(o)x

Tre

T
= lim J s*(.)[c*c-PT(s)BR°1s*pT(s)15(s)xds

T“ o

T

= lim J S*(t)S*(s-t)[C*C-PT(S)BR-IB*Pr(s)]S(s-t)S(t)xds
Ts= "¢

t

+ lim J S*(s)[C*C-PT(s)BR-lB*PT(s)]S(s)xds

Te= 7y

- lim S*(t)PT(t)S(t)x

T+

t

+ I s*(s) [C*c-PBR "B P] s (s)xds
o

= s*(t)Ps(t)x

t

. I s*(s) [C*C-PBR ™ 1B*P]S(s)xds
[+

and bence P ¢ {(V,V’) is a solution of (3.6), (3.7), (3.8) and (3.9).

Conversely, let Q € f (V.V*) be any non-negative solution of (3.9) aad

let uQ(t) - -R-IB*Qx(:) be the corresponding feedback control law with the

- 25 =
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associated closed loop semigroup S, (t) € I a ‘i (W). Then the following

Q f
inequality holds for every x &V !
i
<x°,Qx°> !
- Li: { <SQ(t)xo.QSQ(:)x°>
t
(3.13) + L<sq(s)x°, (c*c+qnn'ln*qlsQ(s)xo>ds) !

3 J < SQ(t)xo, [C"C#QBR.IB*Q] sQ(s)xo> ds
o

s J .
3 (uQ) .]
and hence (H4) is satisfied, Moreover, the operator P € .f(v,v*) defined by i

(3.12) satisfies the inequality

<x ,Px >
o’ o

= lim <x°.PT(o)xo>
T+

£ lim J.r (u) i

= J(u)

for every admissible control u(:) € Lz(o,-;u). This shows that P is the
minimal positive semidefinite solution of (3.6). Finally, taking Q = P, we

conclude that the unique optimal control is given by (3.10) with cost (3.11). Za '

Although the above theorem yields a solution to the infinite time problem,
in 8 sense it is unsatisfactory. This is because we are not sure of a unique
solution to the algebraic Riccati equation and also we cannot be sure that the

semigroup Sp(t) is exponentially stable. In order to resolve those difficulties,

we need another hypothesis.




(HS) 1f x €V and u(-) e Lz(o,-;U) are such that J(u)< =, then x(:) & Lz(o,-;V) :

where x(t), t 2 o, is given by (2.3) with to = 0.

Theorem 3.4

Let (K1), (H2), (H3) and (HS) be satisfied. Then the algebraic Riccati equation

(3.9) has at most oune non-negative, self adjoint solution P € f (V,V*). Moreover,
if P is such a solution, then the closed loop semigroup Sp(t) € ) is

exponentially stable.

Proof

IfEP ¢ f(V,V*) is a positive semidefinite solution of (3.9), then the
inequality (3.13) with Q=P shows that the closed loop control up(:)=-n'15*9x(:)
has a finite cost for every initial state xoc, V. By hypothesis (HS) this means

that
«
I Il sp(:)xollz dt < =

° v

for every x €& V. Hence it follows from a result of DATKO [11] that the semi-
group SP(:) < £ (V) is exponentially stable (see also CURTAIN-PRITCHARD [9]).

The stability of Sp(:) shows that we have equality in (3.13) and hence

J(up) = <x°,P x°> .

Now let Q € £ (v,v*) be another non-negative solution of (3.9) and let us apply

Leama 2.5 to .t.he performance index
J‘r.Q(“) = <x(T},Qqx(T)>

T
. J [yl + <u(e),Ru(e)>] ae
° Y

-1_%
as well as the feedback F(t) 2 - R lB Q and the control input up(t). Then

P'(t) 2 Q and hence the inequality
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= lim JT.Q(“p)

= lim [<x°.Qx°>
+ I <@ 1B%ox(e)+u_ ()R [R1p¥ox(e)+u_(t) ] >de
° P2 P

2 <X >
¢ o.on

holds for every X, € V., Interchanging the roles of P and Q, we conclude that

p=q ¥Z3

Finally, let us briefly discuss the hypotheses (H4) and (H5) which are
chosen in a general sense but are difficult to check in concrete examples. In
most cases it miﬁht be desirable to replace them by stronger assumptions which

are easier to check.

Remarks 3.5

Let (Hl) and (H2) be satisfied.

(i) Suppose that system (2.1) is stabilizable in the sense that there exiscs a
feedback operator F € 2(V,U) such that the closed loop semigroup Sp(t) ' i w

defined by
t

S?(t)x = S(t)x + J S(t-s)BFSP(s)xds
o

for t 3 0 and x € V is exponentially stable. Then hypothesis (H4) is satisfied.

In fact, there is an instant T > 0 and a constant e 20 such that the

inequalities




l spcor i <1, lesg (x|l € Cell x|
F
£w) onn Ty

hold for every x € W. This implies that !

. L4 k .
Il esyC-)x|l se Ilsmll llxllv
k=o

L2(o,=;Y) L

for x € W and hence (H3) is satisfied.

(i1)  Suppose that system (2.1) is detectable in the sense that there exists

an operator K € f(Y.V) such that the output injection semigroup sx(:) ¢l M |
defined by

: i
Sg(t)x = S(t)x + ] Sy (t=8)KCS (8)xds !

° T
for t 3 0o and x € W (see SALAMON [40 , Theorem I.3.9]) is exponentially stable.

Then hypothesis (H5) is satisfied.

In fact, if x(t) € V is defined by

t

x(t) = S(t)xo + I S(t-s)Bu(s)ds, t 2 o,
o

and y(t) = Cx(t) for x € Vendu(’) € Lzloc(o,-;u), then it is easy to see

that
t f

x(t) = sx(t)xo * I SK(t-s)[Bu(s)-Ky(-)]ds, tzo j
o

Hence J(u) < @ implies th.l: x(+) € Lz 0,=;v), 1

(iii) 1If (H4) and (HS) are satisfied, then system (2.1) is stabilizable in the

sense of (i). (Theorem 3.3 and Theorem 3.4). .

(iv) For finite dimensional systems (H5) is equivalent to detectability in the

sense of (ii). It seems to be an open problem whether this equivalence extends

to the infinite dimensional situation.




4, EXAMPLES

4.1 Neutral systems with output delays

We consider the linear neutral functional differential equation (NFDE)

(6.1) d_dt (x(6)Hx,) = Lx +B u(t)

y(t) = Cx,

wvhere x(t) € [Kn, u(t) ¢ Kn, y(t) ¢ RP and x, is defined by
xt(r) = x(t+t), -h £ t £ 0o, h > o. Bo is an n xm matrix and L, M, C are
bounded linear functionals from K = C[-h,0; &n] into R® and Ilp respectively.

These can be represented by matrix-functions n(r), u(r), v(t) of bounded

variation in the following way

o (]
Lé 'I dn(t)e (1), My = I du(t)e (1),
-h =h
o
Co = J dy (1) (1), ¢ ¢ €.
h

In order to guarantee the existence and uniqueness of solutions of (4.1) we

will always assume

(4.2) po) = lim n(r)
Tto

Horeovgr, we will assume at some places that M:?* Qn is of the special form

[+
(4.3) ¥ = jzl A_jp(h) + LlA_.momdr . ¢ €¢

vhere o <h; $h, A€ R™ for j ¢ N, o_() € L-n0; BT

and

Iolagl <=

j=1




2

A function x(-) ¢ L (-h,e; (l“) is said to be a solution of (4.1)

loc
if the function w(t) = x(t) - Mxt is absolutely continuous with an Lz - derivative

on every compact interval [0,T], T >0, and if w(t) = Lx_+ B u(t)
for almost every t 2 o. It is well known (BURNS-HERDMAN-STECH [ 7], SALAMON

[40]) that equation (4.1) admits a unique solution x(t), t 2 -h, for every

2

loc (o,*; R"™) and every initial condition

input u(.)e L

o

(4.4) lim x(t) - Mx_= ¢ , x(t) = 01(1), -h £ 1<o0,

téo

t

vhere ¢ = (¢°, 01) € M2 RD 4 Lz(-h,o; ®"). Moreover it has been shown

in [{7], [40] that the evolution of the state

(4.5) X(t) = (x(t) - Mx_,x ) € M2

of system (4.1), (4.4) can be described by the formula

t

(4.6) x(t) = s(e)¢o + J S(t-s)Bu(s)ds
]

vhere B € i(km, Hz) maps u € Rm into the pair Bu = (Bou,o) and

s(t) € i(mz) in the strongly continuous semigroup generated by A, where

2 1,2 o

D(A) = (s e M2 ol e w2, 4° = olio)-mel)

M= @l

Here wl'z denotes the Sobolev space w1,2 (-h,0; IR").

Obviously, the dense subspace

Wa{@o -m,0): 0w -Qw




1,2

of “2 = sndowed with the W

norm~ is invariant under S(t) and S(t) can be

restricted to a strongly continuous semigroup on W,

The output of the system (4.1) may be described through the operator

o
c:w — RP, co =J dy (el (n) » P eV
~h

Remarks 4.1

(i) The infinitesimal generator A of S(t) can be interpreted as a bounded

operator from W into Hz. By duality, Hz can be regarded as a dense subspace

of W and A" extends ¢to a bounded operator from Hz into H*.

(ii) It has been proved in BURNS-HERDMAN~STECH [ 7] and SALAMON [40] that

system (4.1) satisfies the hypotheses (Hl) and (H2) with H = V = Mz and the

subspace W C Mz as defined above. Hypothesis (Hl) says that the state

X(T) €& M? of (4.1) defined by (4.5) is in W for every input u(+) € 12(0,T; R™

and zero initial condition and that ;c(‘l') & VW depends continuously on
u(-) & Lz[o,'l'; Rm]. Hypothesis (H2) says that the output y(°) of the free
system (4.1) (i.e. u(t) = 0) is in Lz(o.'r; Rp) and depends in this space

continuously on the initial state ¢ & Mz.

({iii) 1£ M : 'Q- - Rn is given by (4.3), then it is known that the semigroup

S(e) € i(Mz) is exponentially stable if and only if

Cbo = sup {Red: det A(A\) =0} <o

vhere 4(A) = A[I - H(cx')'] -I.(cX ) A& € , is the characteristic matrix of

the NFDE (4.1). A necessary condition for the exponential stability of S(t)

is the stability of the difference operator which means that




e  -)h,
4.7) sup {Rer: det{I - | A—j =0} < o. ‘
j=1
These facts have been established by HENRY [21] for S(t) € £ (W). They
extend to S(t) ¢ i (Hz) because of the similarity of these two semigroups

through the transformation wI-A:W -+ M2 with v ¢ o-(A).

n . .
(dv) 1f M: 3 + W is given by (4.3) and if (4.7) holds, then system (4.1)
is stabilizable in the sense that there exists a feedback operator
2
r & i M-, gm) such that the closed loop semigroup SF(t) e ¢ (Hz)

generated by A + BF is exponentially stable if and only if

(4.8) rank [A(x),no] - Vi e, ReAzo.

(PANDOLFU [38], SALAMON [40]).

(v) If M: @ + " is given by (4.3) and if (4.7) holds, then system (4.1)
is detectable in the sense that there exists an output injection operator
K ei(w.p,uz) such that the closed loop semigroup SK(t) cd (Hz) generated by

A + KC is exponentially stable if and only if

aAQrR)

Ae =-n VA e & N ReA2o0.

(4.9) rank [

C(e” )

(SALAMON [40]).

Associated with the system (4.1) we consider the performance index

{ (4.10)  J(w) -] sl + fuoll® e
; ° RP ke

& Then we have the following theorem.




Theorem 4.2
Assume M: \@ + \R® is given by (4.3) and (4.7) is satisfied, then
the following statements hold.

(1) If (4.8 ) is satisfied, there exists, for every initial state ¢ & Hz,

a unique optimal control which minimizes the cost functional (4.10). This

optimal control is given by the feedback law
(4.11) U (&) = - B*wx(r)

vhere 7 € I(Mz) is the minimal selfadjoint, non-negative operator

which satisfies the algebraic Riccati equation
*
(6.12)  A"w + na+C*C - 7BB*r = 0

(this equation must be understood in the space i(w,w‘)). Moreover the
optimal cost is given by

(46.13) J(u“) -< ¢ 7 ¢ >Mz

(ii) 1f (4.3) is satisfied, then there exists at most one non-negative self
adjoint solution 7 ¢ i(Hz) of (4.12). Moreover if n» is such a solution, the
closed loop semigroup s"(:) € f 03) generated by A-BB*r is exponentially

stable,

Apparently the paper of DATKO [10} and the thesis of ITO [25] have the
only available results in the literature on the linear quadratic control problem
for neutral systems. In DATKO' [10] the optimal control is not shown to be
of feedback form. ITO [25] considers neutral systems in the product space
framework, however his detectability concept is very strong and unnatural.

Moreover, the proofs appearing in both papers are quite complicated.




A precise definition of the operators B and C will be given below.

4.2 Parabolic systems

Consider the system

x = Ax + Bu
(4.14)
y = Cx

where A is a self adjoint operator on a real Hilbert space H. Let A , n € N,

be the (simple) eigenvalues of A with corresponding eigenvectors ¢ & H, “in[ . -1,

and assume {A | += as o -+= and ... X <...<d; ¢ constant. Then
n

Ax = ] A <x 0 >4

n
n=1
(4.15) -
2 2
D(A) = {x € H : n§1 Ap <x,0 2 <)

and A generates a strongly continuous semigroup S(t) on H, where

.16)  s(Ox = [ e'n® <x,0 50, .

n=1

For now,

we only assume that the expressions

- - *
(4.17) €, "Ce9 €Y, b =B ¢ U,

are well defined for every n él“ . The operators B and C are completely

determined by these sequences. The remaining problem is to introduce - if

possible -~ suitable spaces W and V such that B ¢ J(U,v), Cc & I (W,Y) and

that the hypotheses (Hl) and (H2) are satisfied. It will turn out that there

is in general some freedom in the choice of these spaces if they exist.

|
|
}




More precisely, for any positive sequence |

a = {a_} » & >0 Vea ol '
n n
néN
we define the Hilbert space
- 1
H:={x=({x} : ] a x% <a)
[+ § a ne“ o=l n n I
with inner produce
-
x,%> = Zl unxnin » XX € By
n-

Remarks 4.3

(i) We may identify H with Hl - 22 via the isometric isomorphism

1
x + {<x >}
' 0“ HnaN
i7l, u, o+ W ]
- i
=} > I x e !
n=l

-

coey oV -1 .2

Gid) 8 -u‘_. - {x:] a, x <=}
a=l

with respect to the duality pairing
v #
x> = ] x x , x*¢H_,,xeH_ .
sy * O a 1 a

a
! (iv) ¢, € H canbe identified with the sequence e - (Oseeer 1, 0, ...)via

the mapping i. This sequence is coatained in any “c'
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Now we may associate with the operator A a whole family of operators Au

on Ha defined by

Q(AG)'(eru: I a

n=1

Azx2<~}
n'n

n

Ax = {An xn} .

nem

Each of these operators generates a strongly continuous semigroup Sa(t) € i(Ha)

which is given by
Apt
Su(t)x = {e xn} »t20, x €H.
new

Associated with the sequences (4.17) we introduce the maps

(4.18) B, : U +HB,

+ {<b >}
u { n.uuum‘

(4.19) C: H =Y,

o
x -+ ] xc .
n=1
However, these operators are not well defined for every choice of 8 and v
respectively. Sufficient conditions of well posedness of (4.18) and (4.19)

as well as for the Hypotheses (Hl) and (H2) are given in the next Lemma.

Lemna 4.4

(i) 1f

- 2
(4.20) I 8 lloll <=
n=l ° "y




then (4.18) defines a bounded operator By & i(U,HB).

In the case U = R condition (4.20) is also necessary.
ii) 1f

® 2
(%.21) J f— Ne ll” <=
n=1l n

n »

then (4.19) defines a bounded operator Cy e i(Hy,Y). In the case U = (R

condition (4.21) is also necessary.

Gii) Let 'no = max {n ¢ IN: A_ 2 o}, let (4.20) be satisfied and suppose that

Y
(4.22) ) = |lv

Then, for every T > o, there exists a comstant b > o such that

T

I

. SB(T-s)BBu(s)dsHY sb |Ju@)]]

Lz[o,T;U]

for every u(-) & Lz[o,’l‘; uj.

(iv) 1f (4.21) holds and

L)
1 2
(4.23) Z W ”cn "Y < =,
n=n, +1 n

then, for every T > o, there exists a constant ¢ > o such that

le, s, ¢l ce el
L% (0, T;Y]

for every x €& Hy.
Proof First note that (ii) and (iv) are the dual statements of (i) and (iii)

respectively. Statement (i) is trivial and (iii) follows from the inequality.
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T
i J SB(T-s)BBu(s)dsH
° Y
- A (T-s) 2
- Z Y ( J e n bnu(s)ds )
n=1 o
T 22
s} Ya J e Nds . ”bn|| -”u(.)llz
n=1 ° 120, 1; R
T
I
< Y e ds|| b + b
n=1 " o n nsq_+1 2 An "

2
HueH ]
12(o,T; R®)

So we have to consider the problem whether there exists sequences Bn' Ya such

that the inequalities (4.20-~23) are satisfied. This problem has a simple

solution.

Lemma 4.5

Given the sequences bn & u, C’n € Y, Ane\i such that Xn is strictly

decreasing and tends to - » , there exist sequences Bn > o0, Yn > 0 such

that the inequalities (4.20~23) are satisfied if and only if

= 1 €alfy + 1] Ball
(4.24) 5 hS i U ¢ w
n=n_+1 IAnI

Proof

Necessity It follows from (4.20) and (4.23) that




2 14 i
= Jl¢ally-liPal} e |I%al -
Y (] Y 2
) s| 1 ! 81l byl <.
n.noq hnl nen,+1l Bnlxnl n-noo»l v

Sufficiency Suppose that (4.24) is satisfied and define

}
(lall /1Pall, Pal’, ator caton A te
- 2
(4.25) 8!\ ﬁ nz llcnlly/lxnl . bn - o, cn + 0, A“ + o,

2
2
1 /0%l b““U ’ bn $ o, €y " O Xn ¢o

1 othervise

‘ .
ol el Alvall 2 b, 400 cgton 2 4o

2 2
n ”cn”\, , b =0 ¢ $o, A, ¢ o,
(4.26) Y, -
2
,Anll/“z“bnnu . bn + o, Cn = O, “n + O,
max l,lxnl) . othervise

Then it is easy to see that (4.20-23) are satisfied. vZ2

Remarks 4.6

(i) Let (4.24) be satisfied and let B, and v_ be given by (4.25) and (4.26)
respectively. Then Y, " Bn]Anl for almost every n € N (with at most a

finite number of exceptions) and hence

| s 2
a(AB)CB(AB ) = {x: Zl Baldg) x5 < =} =H < H.
a=

In particular, hypothesis (H3) is satisfied.

(ii) If the sequence Bn/Yn is bounded, then we may assume without loss of

1

generality that HY < H1 &. H_  or equivalently that the sequences Bn and Yn-

B
are bounded. This can always be achieved by redefining bn'cn'sn and Ya'
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(iii) The system(4.14) is stabilizable in the sense that there exists an
FB & I(HB.U) such that AB + BB l-‘B generates an exponentially stable i
semigroup if and only if bn o forn=3, ceees B where L is defined as in

lemma 4.4(c) (see CURTAIN-PRITCHARD [9 ]).

(iv) Let (4.23) and (4.21) be satisfied. Then system (4.14) is detectable
in the sense that there exists a KB < f(‘l,l{s) such that the operator

As + KB S 8("8)' hd “B generates an exponentially stable semigroup on HB
if and only if <, $o0o forn=1, ..., n . This is not the dual problem of

(iii) since Ka CY is an unbounded perturbation of A However, if < $ o for

g
€ Y such that the matrix
(+]

nel, ..., ns then we may choose fl. ey fn

A <f1.c1> e <f1.cn°>

is stable and define Kg ¥ *HB

K

gy = {<f ,y>)

nenN

vhere fn = o forn > n,e Then it follows from the finite-dimensionality of

Ka that AB + KB' CY generates a semigroup (SALAMON [40])and it is easy to see

that this semigroup is exponentially stable.

Now we are in the position to apply the Theorems 3.3 and 3.4 to the Cauchy

problem (4.14) with the performance index (4.10).

Theoren 4.7 ;
Let the operators A, B, C be given as above. Suppose that (4.24) is

satisfied, let Gn and Y, be given by (4.25) and (4.26) respectively and assume |

that l'lY < Hl c HB' Finally, suppose that bn t o and a toforn=1, ..., n.
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Then the following statements hold.

(i) There exists a unique family (pn o€ R :n,m « N} defining a self-adjoint,
»

non-negative ofaerator P & i (HB. HB‘l) via
Px = { Zl Pa,n %o , x € HB'
o= n eﬂ

and satisfying the following equation for all n,m

+
(An xm)pn.m * <cn,cm>

Y
(4.27)
- -
= J I p .. 0> p .
J-l k=1 n,] ] kU k,m

(ii) Por every initial state X, & HB there exists a unique optimal control
which minimizes the cost functional (4.10) subject to (4.14). This optimal

control is given by the feedback law.

(4.28) u(e) == BBx(e) == [ ] b e w05
a=1 m=]

(note that x(t) € H for t > o) where Pp g ™0 & M.al:e defined as above.
1

The optimal cost is

(4.29) Ju) = nzl m§1 *on Po.m Fon”

Moreover, the closed loop semigroup on “B’ generated by AB - BB B; P is

exponentially stable. L

As a specific example consider

(4.30;1) z, = z“,

t>o, 0o<g <1, !




(4.30;2) zc(o,t) = u(t), zﬁ(l't) = o, t > o,

(4.30;3) z(£,0) = z (£), o<g<1,

1

(4.30;4) y(t) -J c(€)z(§,t)dE, t > o.
o

It can be shown (see CURTAIN~PRITCHARD [ 9]) that this system is equivalent
to a Cauchy problem of the form (4.14) with (Bu) (£) » - §(Edu (& is che
Dirac delta function), A_ = o, Qo(g) 1, )‘n - - n2 '2. On(t) - /7 cosaw§

°
for ngM and o £ £ £ 1. Hence

b, = -1, bn--/'. n amN
1

<, -J c(€)9, (£)d, n=o, 1, 2, caes &
[+ ]

So condition (4.24) is satisfied if

s C
z —2 < @
ael

This allows for arbitrary bounded, linear output operators from LZ[o,I]
into R which means that c(-) & Lz[o.].] or equivalently the sequence cn

is square summable. However, the output operator cancalso be unbounded. For

example, if " n-z': then we may choose Y, - nl-Zt and Bn = n-l-z': so that
W, V are the intermediate spaces
W = [Hl [o,1], L2[o,1]] = H*-E[o!1] |}
b P

2

In particular the solution operator P of the algebraic Riccati equation maps
1
- ¢g

o
(H [o,l])into 2 {o,1].




4.3 Hyperbolic systems

Consider the system
(4.31) 3 = Az + B, y = Cz,
Where A is a selfadjoint operator on & Hilbert space H whose (simple)

eigenvalues An - - u: satisty

4.32) o, 38, ®

n¢1-”n‘ L IIGN.

for some & > 0. As before, let ¢, € Hbe the corresponding cigonf
vectors of A with IIQan = 1 so that A is given by (4.15). For the
operators B and C we only assume that the expressions (4.17) are well

defined.
Identifying H with its dual, we obtain
VeH v,

V-g((-A)l) xelB: [ 2] <x, ¢ >2<.).
n a
n=1
and A extends to a bounded operator from V into V*. In order to
transform (4.31) into a first order system, wa introduce the Hilbert space
K= vxu

<xX,x> = - qo,ﬁ°> W P EDXP XX G‘Jf.
R H

Then the operator a, : Q(Q) —-J{ defined by

6. [: :] v ~Jwaxv,

is the infinitesimal generator of s strongly continuous group S (t) € X *H

which {s given by




[T ~1,..

nzl [(cosmnt)«o, ¢ > * w “(sin w t) < xl,on >]¢n
%.33) Pox-
nzl [-un(simnnt) X #y> + (cos w t) < x1,¢n>]¢n

for x = ,(xo.xl)g J{ _and t 3 0. Moreover, we introduce the operators

B-[o] e leo]

Then the second order system (4.31) can be formally associated with the

first order Cauchy problem
x=QLx+ Ru
y =[x

on the Hilbert apace]{ by means of the identification x = (z,é). In

(4.34)

order to give a precise definition of the operators 8 mdc we
introduce, for any positive sequence a = {an}’ e > 0, the Hilbert

space

- 2 2
f}{a - (x = {(,g'.m,xm)}mN : Zlcn[hnlxon + xm] <@}
ns=
- nalxl x HG

endowed with the inner product
-~ A A a
<xx > = ) o, [hn Ixm Xon * %10 Nin ]. X,X € 3‘(“.

and we identify _‘H with the Hilbert spacefﬂl by means of the isometric
isomorphism
i .-}{ —’5{1 ’
x — {(«0’0n>. < "1"n’)}n€b~1 .

Then we may associate with the operator a the family of operators

ag on :Hc defined by

aox - “*ln'xnxon) )nG N




0@y = el I oyl (A RES

Each of these operators generates & strongly continuous group

‘ro(:) € &(5‘(0) which is given by

(cos unt) X * u;l (sin wnt) x

ga(t)x - "

- un(sin wnt) X * (cos unt) X0

ne®d

for x@ :Ha ‘and t 2 0. Associated with the sequences (4.17) we
introduce the maps

(4.35) By:v—H,

u — {(oo ‘bno“ >U)}n e “ ’

(4.36) CX=:H‘—’ Y,
X —> n§1 cnxon
Lemmra 4.8
(i) 1¢
(4.37) 8 | |12 <=,
n§1 n n U

then (4.35) defines a bounded operator B 8 ¢ i(u"}(ﬁ) . In the case
U= R this condition is also sufficient,

(ii) 1t

= el
(4.38) ] —— <=
vl -y A |

then (4.36) defines a bounded operator ?y € i ( ‘J—(y, Y). In the case

Yo lK this condition is also sufficient. -

(iii) It (4.37) holds and

2
(4.39) sup v_ b |l <=
neN ° v
then, for every T > 0, there exists a constant b > 0 such that




T

I Ig (T-9)f3, uls)ds]|_ &b ||uC-)]]
o ’ Y 12(0,1;0)

for every u(*) ¢ LZ(O,T;U).

(iv) 1f (4.38) holds and

2
. [+
(4.60) sup nllY L.

neW g |yl

then, for every T > O, there exists a constant ¢ > 0 such that

x| | € c |lx||
g, Syexli, e e il

213
foreveryxc'}(Y.

Proof The statements (i) and (ii) are trivial. In order to prove
statement (i1i) note that T

_: T wt 1 (sinmn('r-s))< b u(s)>ds

<i Jfa(r-’)lgﬂ U(s)ds - T

}3\ 0 I (coswn('r-s))< bn,u(s)>uds

} o ng N

for every u(+) € LZ(O,T;U) and hence
T

“ (J)SB(I-S)KB u(s) ds ”2Y
! - T
’ 2
=1 {[J(sinwﬂ('r-s))< b, u(s) >gs]
0
+ [I(cosun('r-s)) < bn,u(s) >Uds]2}

T

2y © .
§ (sup Yn“bn” ) nzl I J(sxmn(‘r-s))u(a) ds ||§
°

T
+ |1 J (cosu_(T-8)) u(s) da le,}

0




o

"2
< const. (sup YngnHz)Hu(-)H
ne 12(0,1;U)

For the final inequality we have to make use of condition (4.32)
together with some properties of Fourier series

(see INGHAM [24] and also RUSSELL [39, p.12-14])),

Finally, let us assume that (4.38) and (4.40) are satisfied. Then the

following inequality holds for every x & ‘}Q and every y(-) ¢ Lz(o.‘l‘;\')

<y (), cv At Sl

12(0,T;Y)
T T
T -1
-] ‘J Y(t)cownf-dtxon*wn J y(t)siwntd:xm.cn>
u=1 o) 0 Y
- T
s 2 i 2 i
e[ T e 2] [ 111 yewrcomparif?]
o+l Y =1 0
S z . p T 2 i
.[ I i)l 2 [ y(t)sinuntdtllyl
a=1 n=1 0
[ew i1yt Zis ]ty
£ const. sup (|¢ y(-
P n'Y n n Lz(O.T;Y)
2 2
[ 8n“nh‘cm} + [ 2 anln]
n=1 n=1
¢ const. || y()]l =}
L2(0,T;Y) 8 '

This proves statement (iv).




Lemma 4.9

Let the sequences bn « U, s e Y, xn - -u: be given and suppose
that (4.32) holds. Then there exist sequences Bn >0, Y, >0 such that the

inequalities (4.37-40) are satisfied and D(OB) 4 '}(' < ’}(B if and

only if
2 2
-
[1®ally Heall
(4.61) y Y a
|
n=1 n

Proof The necessity of condition (4.41) {s trivial. Conversely, if (4.41)

is satisfied, then it is easy to see that the sequences

2
leally/Maal, 1vqll lcall 21 or by=o, ¢ o,

2
.42) 8 = \ /]Il rals Nlbgll Ileall s 1 and v +o,

/{1, b * o c, o,

2
l/”bnnu' bn +0,

o

2
(4.43) vy = “c"“‘l . =0, ¢ $ o,

1 . b =m0, ¢c_=o0,

satisfy (4.37 - 4.40). Moreover, the sequence

2 2
b, b A 21
: gn N N TS P RES
Bn/vn -
il . NI lleally € 2
is bounded and thus :H.Y C FJ{B . Finally, |An|8n 3 v, for every

' a ¢ ™ and hence 9 (08) c NY' /7))
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If (4.41) is satisfied and Bn and Y, are given by (4.42) and (4.43), res-
pectively, then it follows from Lemma 4.9 and Lemma 4.8 that system (4.34)

satisfies the hypotheses (H1l), (H2) and (H3) with

V S -

This time we will not assume that ‘j(Y al ml C':HB so that we are not
tied to an artificial identification of a certain Hilbert space with itself
vhich sometimes leads to unnecessary complications. Nevertheless, we can
apply Theorem 2.6 to our situation since the intermediate Hilbert space H

does not play any role in the proof of that result.

By Theorem 2.6, there exists a unique positive semidefinite strongly

continuous operator

f)(t) ¢ i(j‘fs. f}fe-o, 0OscsT,

which satisfies the differential Riccati equation associated with system

(4.34) and the performance index

T

2
@.ad) T j My @Il + el ae.
0]

This operator can be written in the form

I (plot)n  + pon(t)x, )

(4.45) f(:)x- m m
10, 1
z (an(t)xom * an(t)xlm)

n ek5

for x € ‘]{B and 0 ¢ t £ T. The fact that ? (t) is self-adjoint results

in the condition




01

Ag Poo ey = g:(t). (c) == el

(46.46)
(t) - p (t).

forn, m € NN and 0 s t £ T. In the next theorem we summarize our main

conclusions for the Cauchy problem (4.34) with the cost functional (4.44).

Theorem 4.10
Let the operators a, B , € be defined as above. Suppose that (4.41)
is satisfied and let Bn and Yo be defined by (4.42) and (4.43), respectively.

Then the following statements hold.

(i) There exists a unique positive semidefinite operator P (t): H - tHB—I
of the form (4.45), (4.46) whose coefficients p (t). p (t), p (c) are
continuously differentiable on the interval [0,T] and satisfy the differential

Riccati equation

-2 p (t) + A p (:) + A p (:) + <cn.cm>

(4.47;1) 10 10
=) I <b.,b> p. (t)p, (¢),
ik 3k gy Tm kn
(:)-x Pom (t)+A pu()
. (4.47;2)
- =5 T <b.b> pMe) pllee,
(s 5 x i ku jm kn
1Le) + plo) + 6200
(4,47;3)
475 11 11
- b.,b b ,
| E E < 5 “>u me(t) P (D)
L
’ (6.47;4) (r) - p (T) - p ' = o,

for n,m & l\‘ and 0 s t ¢ T.
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(iij For every initial state (xo.xl) € t}{ there exists a unique optimal
control u(t), 0 s t § T, which minimizes the cost functional (4.44) subject

to (4.34). This optimal control is given by the feedback law

ue) =~ B* Pxe)

(4.48)
10 1
--EgbnMJm%“Mfa*%Jmﬁm'WJ'

The optimal cost is
I = <t oxp), Plo)(xux))
-1 [ ~<x 0 0h ] Pog(0)<x 0,0
n wm
+ 2 <x1,¢n> p£(°)<xo’¢m> + <x1'°n> p:;(o)<x1,¢;n> }. w
As a specific example, consider the system

€4.50;1) z, " Zgpr t>o0, 0<gc<1l,

(4.50;2) z(o,t) = u(t), z(1,t) =0, t>o,

(4.50;3) z(£,0) = xo(E). zt(E.O) = xl(E). 0<g<1,

I c(g)z(g,t)dE, t > o,

o

(4.50;4) y(t)

in the Hilbert space

1) (I H;(O,ll x L3[0,1]

which we identify with its dual. Then the operator

A =4, D(A) - HZ[O,I] N “;[0-1]-
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has the eigeralues An - - nzw2 with corresponding eigenfunctions

on(c)-/Z_sinnﬂi, 0Os€Esl, ne N ,ando:g(a)*‘}( is

given by
a-[‘j;]. 9 Q- 3(A)xH:[0.l]

Moreover, the input operator for system (4.50) takes the form B u= (o, ~-68'u),
u € \R , where §' is the distribitional derivative of the Dirac delta
impulse at £ = O (see CURTAIN-PRITCHARD [9]). Hence the following equations

hold for n & N

* ]
b= B ¢ =6 (0) =VZnm,
(1
<, - 'g On = /2 J c(E)sinnw 4§

(-]

So condition (4.41) is satisfied if and only if

4.51) ] e | <=
n=1
and we may choose
[ 2 1
8 -max(uj—’ 3 Y --l_’ n&l}s\g.
1Aal |Aal R P

(compare the formulae (4.42) and (4.43).

In particular, this means that the boundary control system (4.50) has continuous

solutions in the space

1) - ‘:HY =12 [0,1] x H ! {0,1]

2

for every input u(-) & Llo

e (0,#). This result has also been established by
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LASIECKA-TRIGGIANI [32]. Moreover, condition (4.51) shows that C can be
chosen to be arbitrary bounded linear functional on Lz[o,ll. The space
V. 5{8 depends on this functional. For example if Cn - n'l, then we

can choose ﬂn =n 4 and get

V- H-v'onx Iw*

In this situation it is usual to take rh) as the state space instead of

t%{ and ideatifyiag 7\) with its dual we have

V* - o] x L2[o,1)

~o . * . . .
and (t) maps‘l' into ‘1} . Hence the Riccati operator has a smoothing

effect with respect to '%3 - Lz[o.ll x H-l[o,ll.

Remarks

Boundary value control problems for parabolic and hyperbolic systems
have been treated by a variety of authors, for example BALAKRISHNAN (2],
WASHBURN ([42], LIONS [34], CURTAIN-PRITCHARD [9], LASIECKA-TRIGGIANI (31],
[32]. The weakest conditions imposed to generate a solution of the Riccati
equation for hyperbolic systems are those of LASIECKA-TRIGGIANI [32]. They
study precisely the boundary control problem (4.50) where the output operator
is the identity on L2[0,1]. This case cannot be treated within our framework,
however, the Riccati operator in [32] is in éf (45 ) and does not have a

smoothing effect relative to %3 = L2[o.1] x H-l[o,ll.

PART IT

In this part we develop a state space approach for linear retarded
functional differential equations (RFDE) having general delays in the state -
and input/output - variables. This will be done in the context of semigroup

theory. In particular, we extend the concept of structural operators

'
i
1
!




(BERNIER-MANITIUS [4 ), MANITIUS [35], DELFOUR-MANITIUS [19], VINTER-KWONG
[41), DELFOUR [16]) to RFDEs with delays in both input and output variables
and we develop a duality theory for this class of systems (Section 5). In
Section 6 we make use of these results in order to apply our general theory
of the linear quadratic optimal control problem to RFDEs with input/output

delays.

S. STATE SPACE THECRY FOR RETARDED SYSTEMS WITH DELAYS IN INPUT AND OUTPUT

5.1 Control systems with delays

We consider the linear RFDE

(5.1;1)  x(t) = Lx, + Bu_,

(5.1;2)  y(t) = Cx,
where x(t) ¢ R, u(e) € R®, y(&) ¢ RP and X,» u, are defined by
xt(t) = x(t+1), ut(‘l’) = u(t+7) for ~h s T €0 (0O <h< =),

Correspondingly L, B, C are bounded linear functionals from C = C (-h,0; Rn)
respectively C (-~h,0; Rm) into \ln respectively llp. These can be

represented by matrix functions n(1), B(1), vy(t) 1in the following way

h h
Lo -J dn(1)e(-1),  Co -J dy ()8 (-1, ¢ € C(-h,0; R™),
o [e]
h
BE = J dB(DEC-T), € € € (-h,0; RP).
[o]

Without loss of generality we assume that the matrix functions n, 8 and v

are normalised, i.e. vanish for t € 0, are constant for t 2 h and left

continuous for O < t < h. A solution of (5.1;1) is a function

X & Li (~h,=; \ln) which is absolutely continuous with Lz- derivative on
oc




Wil

every compact interval [0,T], T > O, and satisfies (5.1;1) for almost every
t 2 0. It is well known that (5.1;1) admits a unique solution x(t)= x(t;¢,u),

t 2 ~h, for every inmput u(-) ¢ Lfoc(o,-; Rn) and every initial condition

(5.2;1)  x(o) = ¢°, x() = o},
(5.2:2) u(x) = ¢%(x), =-hst<o,

where ¢ = (¢°,¢1,¢2)6. ¥ = R"x Lz(-h,O; R™ x Lz(-h,O; R‘)
Moreover, x(-;¢,u) depends continuously on ¢ and u on compact intervals,

i.e. for any T > O there exists a K > o such that

i xC-30,0]) ﬂ[ﬂloll*llull
wb2,1; RY 12(0,7; R™
2 v2
where (foll =cllo®l” + 1o 1%+ 10212 ) for e e X
2

L2 L
(see e.g. BORISOVIC-TURBABIN [ 5], DELFOUR-MANITIUS [19], SALAMON [40]). The

2

P
loc (0,=; R") and depends

corresponding output y(¢) = y(-;¢,u) is in L
in this space - continuously on ¢ and u. The fundamental solution of
(5.131) will be denoted by X(t), t 2 =h, and is the n xn matrix valued
solution of (5.1;1) which corresponds to u = o and satisfies X{(o) = I,
K(t) = 0 for -t s t < O. Its Laplace transform is given by A-l()), where

AQY =NI-L(e*y = N1~ J dnceye > , YeC,

o

is the characteristic matrix of (5.131). It is well known that the forced

motions of (5.1;1) can be written in the form
t

x(t;o,u) = J X{(t-s)Bu ds, ¢ 2 O.
° 8
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We also consider the transposed RFDE

. T
.31 () = LTz + c"'vt ,

(5.3;2)  we) =Bz,

with initial data
.41 z(0) = ¢° z(m) = (v
(5.4;2) wv(r) = 02(1). -h g1 <0,

vhere v = (¢°,01,47) € X% = R x t%¢-h,05 R)xt?(-n,05 RP)-
The unique solution of (5.3;1) and (5.4) will be denoted by z(t) = z(t;¥,v),

t 2 -h, and the corresponding output by w(t) = w(t;y,v), t 2 o.

5.2 State Concepts and Duality

The 'classical' way of introducing the state of a delay system i3 to
specify an initial function of suitable length which describes the past history
of the solution. This is due to the existence and uniqueness of the solution
to the delay equation (in our case (5.1)) and its continuous dependence on
the initial function (in our case (5.2)). Correspondingly, we may define the

state Of system (5.1) at time t 2 o to be the triple.

x(t) = (x(t).x;.ut) e X

and analogously, the state of the transposed system (5.3) at time t 2 o

will be given by
- : T
~z2(t) = (2(t),z,,v.) € 3 .

The idea of including the input segment in the state of the system was first

sugge +d by ICHIKAWA [22], [23].

In order to describe the duality relation between the systems (5.1) and

(5.3), ve nead an alternative state concept. For this we replace the initial
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functions 01 and 02 of the state- and input- variables by additional forcing
terms of suitable length on the right-hand side of both equations in (5.1).
These terms completely determine the future behaviour of the solution and the

output. More precisely, we rewrite system (5.1), (5.2) as

t t
(5.5;1) x(t) = I dn(t)x(t=t)+ I dB(t)u(t-1) + fl(t),x(o) = f°,
Q [}
t
(5.5;2) y(t) = I dy (t)x(t-t) + f2(:). tzo
-]

vhere the triple

- *
£- e e X - R x1on; R xLP(o,n; B

is given by

(5.6;1) £2 = °
h h
(5.6:2) £l(t) = j dn()e! (e-1) + J d8(1e2(t-1),
t t
h
(5.633) f£2(t) = J dy(t)el(t-1), O0s tsh
t

Remarks 5.1

(i) The expressions on the right-hand side of (5.6;2) and (5.6;3) are well
defined as square integrable functions on the interval [o,h] (see e.g.
DELFOUR-MANITIUS [19] or SALAMON [40] ), Each of them can be
interpreted as the convolution of a Borel-measure on the interval [o,h] with

2

an L°~function on the interval [-h,o],

(ii) The product space f - \l“ x Lz(o,h; \Rn) x Lz(o,h; g") can be
identified with the dual space of *_T - IKn x Lz(-h.o; kn) x Lz(-h,o; W\p)

via the duality paiiing

|



"lllllll!lll'l-"--'-l'l--l-Nn--M"---—-mv--u--u_ . : N

<y, > i
2T T
h T h T
- 0T g0, I ¥ (~)gl(s)ds + J ¥ (-8)£2(s)ds
[} -]

*
for v ¢ 3eT and £ € §eT . In the same manner we can identify the
* n m
product space 3 = \Rn x Lz(o,h; R x Lz(o,h; IR ) with the dual space
n
of 3¢ = " x L2(-h,0;5 1™ x L¥(-h,0; R™.

Now it is easy to see that the solution x(t) and the output y(t) of
system (5.5) vanish for t 2 o if and only if £ = 0. This fact motivates
*
the definition of the initial state of system (5.5) to be the triple f € BET .

Correspondingly the state of (5.5) at time t 2 o is the triple
2 t .t ™
x(t) = (x(t),x %4 ) & x

where the function components xt < Lz(o,h; IRF) and yt [ Lz(o,h; ﬂlp) are

the forcing terms of system (5.5) after a time shift. These are given by

t+s t+s

(5.7;1) xt(s) = I dn(t)x(t+s-t) + J dB(t)u(t+s-1) + fl(t+s) »

t+s
(5.7;2) yt(s) - J dy (t)x(t+s=-1) + f2(t+s), o¢s<h,
8

vhere fl(t) and fz(t) are defined to be zero if t ’! [o,h].

The idea of defining the state of a delay equation through the forcing term
rather than the solution segment was first suggested by MILLER [37] for
Volterra integro-differential equations. The corresponding duality relation
has been discovered by BURNS and HERDMAN [ 6]. Further references in this

direction can be found in SALAMON [40].

The same ideas as above can be applied to the transposed equation (5.3).

For this we rewrite system (5.3), (5.4) in the following way.
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e
t t
(5.8;1) z(t) = I dnt(r)z(t-r)+ I dvr(r)V(t-r)+sl(t). z(o0) = g°,
o . o
t
(5.8;2) w(t) = J a8T(1)z(t-1) + g2(t), ¢t 3 o,
o

vhere the triple

g = 6%ehed) "= & x 1200,h;RY) x Li(o,h; RY
is given by

(5.9;1) g% = °

h h

(5.9;2) gi(e) = J anT(rwl(e-1) + j ayT (o),
t t.
b

(5.9;3) zz(t) - j dBT(t)wl(:-t). ostsgh.
t

The initial state of system (5.8) is the triple g ¢ x* and the state at

time t 2 0 is given by
- *
2(e) = z(t),25w%) ¢ x

t

vhere the function components 2t & Lz(o,h; k“) and v & Lz(o,h; R‘)

are of the form

t+s t+s
(5.10;1) z"(-) - I dnT(t)z(tﬂ-t) + I dYT(t)V(t*l-t) + gl(tﬂ).
) [ ]

t+s

(5.10;2) wt(s) - J dBT(t)z(tﬂ-r) + ;2(tﬂ), osssh,
s

These expressions can be obtained from equation (5.8) through a time shift.

Summarizing out situation, we have introduced two different notions of
the state both for the original RFDE (5.1) and for the transposed RFDE (5.3).

A duality relation between these two equations involves both state concept.




The dual state concept (forcing terms) for the original system (5.1) is dual
to the 'classical' state concept (solution segments) for the transposed

system (5.3). More, precisely, we have the following result.

Theorem 5.2 Let u(.) € L2 (0,»; l&n) and v(*) € L2 (0,=; \Kp) be given.

R — loc loe .
T* T !

(i) Let £ € 22 and ¢y ¢ X . Moreover, suppose that ‘

*
HO K (x(t).xt.yt) [ 3!? is the corresponding state of (5.5) with output

y(t) and that z(t) = (z(t),z:,vt) e x_‘!’ is the state of (5.3), (5.4) at time

t 3 o with output w(t). Then

<"1§(:)> * -<;(t)nf> *

t t

- J wT(t-s)u(s)ds - I vT(t-s)y(s)ds, t2o0.

o (-]

(ii) Let ¢ € X and g ¢ X *. Moreover, suppose that x(t) = (x(t),xt.ut)
is the corresponding state of (5.1), (5.2) with output y(t) and that

. *
2(t) = (z(t).zt,wt) € X is the state of (5.8) at time t 2 o with output.

w(t). Then
@, x(t)> - <z,
t t
T T ‘
- I w (t-s)u(s)ds - I v (t-s)y(s)ds, t 2 o
° °

Proof We will only give a proof of statement (i). For this let us assume
that z(c), t 2 - h, is the unique solution of (5.3), (5.4) with output w(t),
t 2 o, and that x(t), t 2 o, is the unique solution of (5.5) with output
y(t), t 2 0. Moreover, let x° € Lz[o.h; k“]. ytg Lz[o.h; ®P) be given

by (5.7) and define x(t) = o, u(t) = o for t < o. Then it is easy to see

that

t
J (lr(t-s)l.x. - [Lth_.]Tx(s))ds
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ht

.= I J vlr('s)dn(t)X(t+s-t)ds
00

and analogous equations hold for B and C. Moreover

t

VOT x (¢) - tr(t)fo - J f% z (t-8)x(s)ds

t t )
- J £¥ (t-8)%(s)ds - J 2T (t-3)x(s)ds

-] [+

This implies

<"li(t)> T ™ <i(t)'£>

Xvi }_T'I' }

e ¢%Tx(e) - 28 (e)€°

h h

+ I vlT(-s)xt(s)ds + J WZT(-e)yt(s)ds
o °
h

2T (t-8)E!(s)ds - I vI(t-5)£2(s)ds
° o

° '
h-t H

T wlr(-s)fl(t+s)ds

{L z, ] x(s)ds +

-]
- J z (t-s) [Lx 4Bu +f (s)] ds
-],

O

o

hrt

L
bt

h=
I (-s)dn(')x(t+s-t)da + I I OIT(-s)dB(T)u(t+S~T)ds
o
+ I J v (--)dv(r)x(:*s—r)ds + I 021('l)f2(t0t)dl
°

[+)

h
z’(:-.)f (8)ds - J W T (e-9) £ (a)ds
o t
, h
I vi(t-s)€2(s)ds - I w2 (t-8)£2(s)ds
o o
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e e -

aa
t t
- J [BTz t_s;].l'.u(s)ds - J VT(t-s)[st + fz(s)st
o -]
t t
- J VT(t-s)u(s)ds - J Vr(t-s)y(s)ds. m
o [+

5.3 Semigroups and structural operators

Throughout this section we restrict our discussion to the homogeneous
systems (5.1) and (5.5) respectively (5.3) and (5.8) which means that u(t) = O

respectively v(t) = 0 for t 2 o.

The evolution of the systems (5.1) and (5.3) in terms of the 'classical'
state concept (solution segments) can be described by strongly continuocus

semigroups
T v T
Sw: %+ %, §fw:> -+ x".

The semigroup S (t) on X associates with every ¢ € 3C the state

S =@ = xo.x,u) e

of (5.1), (5.2) at time t 2 o which corresponds to the input u(s) = o, 8 2 o.

Its infinitesimal generator is given by
'9(0.) =0 eX|o! ¢ w2(n,0; \k“),a;ze w2(-h,0 Rm),¢°-¢1(o).oz(o) - 0}

Qo = welene?,ol,6d

(SALAMOX [ %40, Theorem 1.2.6]). The semigroup S T(t) is defined analogously

and generated by the operator
8 @ = wexivie Wi eno; By e W 2en,0 RP
v° = v (0).4%(0) = o}
Qe = alvlecTi?itid.
An interpretation of the adjoint semigroups Srﬁ(t), .‘ér‘ - x‘l‘* and

* * *
S (t): 3 + £ can be given through the dual state concept (forcing terms)
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tor.thc systems (5.1) and (5.3). More precisely, we have the following

result which is a direct consequence to Theorem 5.2.

Corollary 5.3

(i) Lec f € X_T* be given and let i(t) - (x(t).xt,yt) € x‘" be the state
of system (5.5) at time t 2 o corresponding to the input u(-) 3 0. Then

i - st

* *
(ii) Let g € X be given and let z(t) = (z(:),zt,vt)e X be the state
of system (5.8) at time t 2 o corresponding to the input v(¢) = O, Then

20 = §"ws.

Our next result is an explicit characterization of the infinitesimal generators

Q,T* and Q * of the semigroups ST*(t) and 5 .(t).

Proposition 5.4

*
(i) Lecf, d € IT* be given. Then f ¢ 8 (Q_T*) and Q7" = ¢ if and

only if the following equations hold
(5.11;1) n(n)£° = ¢ + J at(s)as,
°

h

(5.11;2) £1(t) + [n(e)-n(n)]€° = - J al(s)ds, ostsh,
t
h

(5.11;3) fz(t) + [y(t)-y(h)1£° = - I dz(s)dc. ostsh,
t

(ii) let g, k ¢ )E_‘ be given. Then g ¢ 8 (Q*) and Q_*g =k if and

only if
h
(5.12;1) nT(h)g® = k° + I k! (s)ds
[+]
n
(5.12;2) gl(t) + [T(e)-n"(h)]g° = - I kl(s)ds, o5t
t
h

(5.12;3) g2(e) + [8T(e)-8T(h))g° = - J k2(s)ds, o<t € h.
t




'|||||||||||lllllIll-llllllllll'll'lll"l""""""""""""""""""""""

Proof  Obviously it is enough to prove statement (i). First note that
* *
£ o D ( aT ) and Q_T f =dif and only if <p,d> = < (¢ Tw,b for every

v« D ( QT). Hence statement (i) is a consequence of

h b
<p,d> = °Te° 4 J W' T-eral (s)as + j v?T (-s)a%(s)ds
[+] o
h h h
- vT(0r (¢ » I al(syas] - J ) I dal(s)dsar
(] -] t
b h

- J V(-0 J d%(s)dsde
t t

and

A

a Tv, e

h h

- J wu(-t)dn(t)f° + J wZT(-r)dY(r)f°
[+] 0

h h

¢I 01T -s)£l (s)ds + I v T (-9)£2(s)ds
[ [«]

= v Tn@m)£° + w2 (=h)y (h)£°

h h

+I v T(-6)n(s)£%s +J V2T (~8)v(8)£%s
[] o

h h
+[ T =06l (s)as +I $?T (-8)£2(s)as
-] [+
h
- vu(o)n(h)fo + I i‘lr(-S)[fl(s) + n(s)£°® - n(h)f°]ds
o

h

. I VT -0 1£2(8) + v(8)£° - Yh)€E%lds. ZZ3
[
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The duality relation between the systems (5.1) and (5.3) can now be

described through the following four semigroups

.J(:):X*;g, STw: xT - xT,

Jp(t):xrﬁ _.3('-1-*’ 5*(':): x* N x*

The semigroups on the left-hand side correspond to the RFDE (5.1) and those
on the right-hand side to the transposed RFDE (5.3). On each side the
upper semigroup describes the respective equation within the 'classical’
state concept (solution segments) and the semigroup below within the dual '
state concept (forcing terms). A diagonal relation is actually given by

functional analytic duality theory.

The relation between the two state concepts can be described by a so-called

structural operator

T i x - x”

which associates with every ¢ ¢ X the corresponding triple
T* .
(5.13) "Fo=f €X (£ given by (5.6)).

It is easy to see that this operator maps every state x(t) &€ X of system
2 *

(5.1) into the corresponding state x(t) € ZT of system (5.5) which is

given by (5.7) and (5.6). This fact together with corollary 5.3 shows

that the following diagram commutes

x lﬁ’_»ae
3[ ¢

ST*(t)
T* EE—— ™

x x .




. . L * *
Another important fact is that the adjoint operator Aa : ;{_T - X
plays the same role for the transposed RFDE (5.3) as the structural operator

x®
"3 - A 4 T does for the original RFDE (5.1). These properties are

sumnarized in the theorem below.

Theorem 5.5

@ 3lo- ™I, 3" §'w- 3w
G 129 € JQ), then o € J (A™) ana
AT g e- Y Qo.

Qi) 1£¢ € DA, men 'y ¢ PA" ana
S I R W

* *
(iv) The adjoint operator Y : 1’: + X maps every ¥ € %! into

* »
the triple S; Y= g € :( which is given by (5.9).

Proof Statement (i) follows from the above considerations, the statements

(ii) and (iii) are immediate consequences of (i) and statement (iv) can be

proved straight forwardly., (ZZJ

A structural operator of the above type has first been introduced in
BERNIER-MANITIUS [ 4], DELFOUR-MANITIUS [19] for retarded systems with state
delays only and later on by VINTER-KWONG [41], DELFOUR [16] for RFDEs with
delays in the state and control variables. An extension to neutral systems

can be found in SALAMON (40].

5.4. Abstract Cauchy problems

In order to describe the action of the output operators for the RFDEs

(5.1) and (5.3) - each within the two state concepts of section 5.2 - we




{introduce the foll;wing four subspaces

r

(el ¢ W 2en,0; RM,4° = o )},

wexTlol e v ieho; RMWC = vi ),

p
"
[ ]

£ € X2+ ()% € ¥ %o, RP) ,£2(h) = o0},

<
(]

s € X"[s7(+67(38% ¥ 2(o.h; &Y ,87() = o).

,Ut

These have the following properties.

Remarks 5.6
* *
(i) The subspaces W , WT, V™ and V" are dense in X%, %7, =
* *
and x , respectively, Moreover, ) and \)T become Hilbert spaces if
they are endowed with the norms

o (-]
LoE = 1ol + [ 13 l? ar e [ 22 are e D
R - R* = R
h

2 2
e’ -uen [ o e
'\)T Rn o kn

h
2
aT®
.j I f.— (£2(s) + y(0)E°1]|  _ds, £ € V.
o Rp
Topologies on Uo T and 'U* can be defined analogously.
» *
(ii) The dual spaces 'v , 1)", ‘wT and 1«) are extensions of

x, %7, Xr*lnd .X*. respectively. Thus we obtain the inclusions

"\«)'CIC’U. DN ¢ xT c VT,
,\)‘[ic xra c '\«)T.. .‘)t c )e* C.'\\.'
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with continuous, dense embeddings.

(iii) It is easy to see that S(h) e £ .V,

ST e L™, PN, FTm e L™ V™) ane

S *h) ¢ i(}_',‘\)*). By duality, we obtain S (n) € £ (V,X)
T BT, XN, ITme LW ¥™ ana 'y e FV, x5

Before introducing the input - and outputA - operators, we prove that
* *
the spaces W R '\) T, 'v T and 7) are invariant under the semigroups
* *
S (), f T(t), ST (t) and & (t), respectively. For this we ne:d

the following preliminary result.

*
Lemma 5.7 Let £ € V' be given and let d & L2(o,h; IRP) satisfy
h

fz(s) + [y(s) - Y(0)]£° = - I d(o)do, o s s ¢ h.
8

Moreover, let x(:) € wl'z(o,t; Rn) be chosen such that x(o) = £° and let

v € 12(o,h; BP) be defined by (5.7;2). Then |

yE(8) + [v(s) - Y()] x(t)

h t+o
- - J { J dy (1)x(t+o-1) + d(t+o)]do , osssh-.
t ]
[}

Proof Let us define x(s) = £° for s € o and d(o) = O for o d_ [o,h].

Then the equation
h
J dy (t)x(t+s-t) = [y(h)-y(t+s)]£°

c+s

holds for all t,s 2 o. This implies
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h téo
J { I dy (t)x(t+o-t) + d(t+g)]da
s ¢

h h

h-¢
- I I dy (1)x(t+o-1)do + I d(t+o)do
s’a A

h T h

'I dy (1) I ;t(ua-t)ds + jd(c)do
s

t+s

h
- I dy (1) [x(t)~-x(t+s-1)] - 52(:43)
2

= [y(t+s) - Y()]£°
t+s
= f{y() - v(s)] x(c) - J dy (1) x(t+s~7) + fz(t.#s).
) )
= - y5(s) - [v(s) - y())x(r). VZA

Now we are in the position to prove the desired invariance properties

of the subspaces 7\). wT, R, ™ and UV *-

Proposition 5.8

) r (t) is a strongly continuous semigroup on W and U .
(ii) S T(t) is a strongly continuous semigroup on '\31 and D T.

. . : . * *
(iii) ST*(:) is a strongly continuous semigroup on 1) T and 1\) T .

'S
(iv) S (t) is a strongly continuous semigroup on '1)* and %'.

@ 3 edwW, V™ Fev.,w™.




vi) e ALV wme g e LVLUWN.

Proof First note that every solution x(t) of (5.5)' is absolutely

continuous for t 2 o and that its Lz-deriva:ive depends continuously on

DS

*
$ € X7 (sataron [40, Theorem 1.2.3 (i)]). This shows thac § (t) is a

strongly continuous semigroup on )\3 .

1,2, .. b
loc(o' : [R) be the

corresponding solution of (5.5) with u(t) = o. Moreover let y(t), t 2 o,

*
Now let £ € V T be given and let x(-) &€ W

be the output of (5.5) and let x® and yt be given by (5.7). Then
"
I T (t)f = (x(t).xt,yt) (Corollary 5.3) and hence it follows from Lemma

* Th
5.7 that the function t — f T (t)f is continuous with values in "D f

*
and depends in this space continuously on f "UT .

The same considerations - applied to the transposed system (5.3) = show
*
that ST(:) is a semigroup on WT and that S (t) is s semigroup on
*®
v . The remaining assertatioms in (i), (ii), (iii) and (iv) follow by

duality.

In order to prove (v) and (vi), let ¢ € '\") be given. Then Lemma 5.l7 -
applied to £ = o, t = h, and x(s) = ¢1(s-h) for o £ s £ h - shows that

*
'\3 ¢ € KT satisfies the equation

2
(Y61 6)+ [yl - ymI[Ye)° |

h h |
=-- J J dY(T)él(U-r)dq, oss<sh. '
s o
- * . » I3
Hence '3 ¢ is in )T and depends in this space continuously on ¢ € w .

*
We conclude that e i(“b,’\)'r ). The remaining assertions of (v) and (vi)

follow from this fact by analogy and duality. ZZZ2

""A{-‘" -

Now let us introduce the output operators

6:7\)-—- ﬂp, BT:W
&:v"~ R, B': V¥

-
-]

l

{

R R
]
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by defining

h
E -J dy()et ), ‘e W
o

h
B% - I a8l v, v €W’
[+]

™ - 0, £ ¢,
8 = s, s V™

Then the adjoint operators
.B: R-“’V , fT: RP_.);.T.
B”: re—= W™, € :r ~ W

describe the input action for the systems (5.1) and (5.3). More precisely,

we have the following result for the RFDE (5.1). The corresponding statements

for the transposed RFDE (5.3) can be formulated analogously.

2

m .
Toc (0,»; R ) be given

Theorem 5.9 Let u() € L
(i) Let ¢ & W and let x(t) ¢ X be the corresponding state of (5.1),
(5.2) at time t 2 o, Then ;(t). t2o , 1is a continuous function with

values in 'V\) and depends in this space continuously on ¢ € % and

u(+) ¢ L:oc(o'.; lkm) . Hore:vet
(5.1451) x(t) = § (t)0 +I L t-s) Buta)as, 20,

-

where the integral is to be understood in the Hilbert space v . The output

y(t) of(5.1)is given by

(5.14;2) y(t) =@ % (¢, tzo.

(ii) Let £ & DT and 1et x (t) € X,T* be the corresponding state of (5.5)
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-,

at time t 3 0. Then x(t), ¢t 2 o, is & continuous function with values
, . *
ia "DT* and depends in this space continuously on f & 'DT and

2 .. @
ul-) & Lloc(o' i @ ). Morsover .

t
5.15;1) x() = S™(o)e I 3 ™e-0) 8 uts)ds, £ 20
-]

. . . T*
vhere the integral is to be understc.. in the Hilbert space 7\) +« The

output y(t) of (5.5) is given by

(5.15;2) y(t) _c-r. 2(t), t3o.

Proof 1If u(-) = o, then the statements of the theorem follow immediately
from Proposition 5.8 (i), (iii) together with the definition of the operators

X .
g and FT . So we can restrict ourselves to the case ¢ = o and £ = o,

Pirst of all, the same arguments as in the beginning of the proof of

Proposition 5.8 show that x({t) is continuous with values in 1\) and depends

2
loc

* 2 .
equation (5.14;1). For this let g €V be given, let z(t) ¢ X,' be the

. @
in this space continuously on u(.) € L] (o,», /& ). Secondly, we establish
corresponding state of (5.8) with v(-) 2 o and let w (t), t 2 o, be the
* " .
output of (5.8). Then z(t) = J (t)g ¢ V' (Corollary 5.3 and Proposition
. L] s *

5.8 (iv)) and w(ct) = B z(t), by definition of the operator 8", Hence
it follows from Theorem 5.2 (ii) that the following equation holds for every
t3o0

<3-§(C)>

'S
v
- <g,x(t)>

X* x -
t

- I vT(r.-n)u (s)ds
°

[ 4
- < R* ‘(:-u) Syu(s)> o 99
|, B e

“ PR 1




t

- <g,I I (t-s) Bu(s)do
o

*
V.V
This proves statement (i).

Now recall that (t) -?i(t) as long as £ = 0 and ¢ = o. Hence it
follows from (i) and Proposition 5.8 (v) that x(t), t 2 o, is continuous
*
with values in '\)T and depends in this space continuously on
2
u(-) € Llo
analogous manner as (5.14;1).

c(o,--; \lm). Finally, equation (5.15;1) can be established in an

The previous theorem shows that the evolution of the state x(t)
of the RFDE(5.1) in terms of the 'classical' state concept can be formally

descri_bed through the abstract Cauchy problem

d—dti(:) - ai(t) + Buty, ) =4,

y(r) = § (o,

in the Hilbert space ')\) respectively 'v .
Analogously, the state x(t) € IT* of equation (5.5) in terms of the

dual state concept defines a mild solution of the abstract Cauchy problem.

Liw - QM iw + BMum, k@ - ¢,
I |
v = ™ x(v,

in the Hilbert space '\)” respectively g Vi

If we consider the Cauchy problem I (respectively XT‘) in the smaller
state space W (respectively aY) T*), then the output operator f (respectively
g 1'*) will be bounded and the input operator B (respectively BT*) unbounded.
Nevertheless, the solution of I (respectively 2“) in the state space 7‘\)
(respectively "0‘*) is well defined, since the input operator satisfies the

hypothesis (Hl) of Section 2, More precisely, the operator ﬁ (respectively




BT*) has the following property which follows directly from Theorem 5.9.

Remark 5.10

For every T > o there exists some counstant b.r > ¢ such that the inequalities

T
”J 3(T-s) Butsiasl] s b |l ul)]
T 2 m
° W L%(o,T; &)
T
”J ST*(I—s)BT*u(s)dsll LS b'r" u() |l
° v 12(0,T; %)

hold for every u(-) & L2(0,T; R™.

If we consider the Cauchy problem I (respectively tr*) in the larger

- . T* . :
space U (respectively W~ ), then the input operator will be bounded
and the output operator unbounded. Nevertheless, the output of the system
is well defined as a locally square integrable function since the output
operator satisfies the hypothesis (H2) of Section 2. More precisely, the
*

operator g (respectively fT ) has the following property.

Remark 5.11 For every T > o there exists some constant ¢, > o such that

T
the inequalities

HES el ©eliel .

1%(0,T; RP)
T® p Tk
g™ £ ol sop el
12(,1; R P) W
hold for every ¢ ¢ N and every f € \)T*.

This follows by duality from the fact that the adjoint operators ﬁT

*
and ﬁ are the input operators of the transposed equation (5.3) and hence

satisfy analogous inequalities as those in Remark 5.10.




Now let us apply Theorem 5.9 to the transposed RFDE (5.3). Then we
obtain that the state z(t) ¢ BET of (5.3) in terms of the 'classical' state

concept defines a mild solution of the Cauchy problem

T d;‘: z(t) = aT;m + fTV(t). z(o) = v,

we) = BT

(to be considered in the Hilbert spaces "h)r and '})T) vhereas as the
2 *
state z(t) € ¥ of (5.8) in terms of the dual state concept defines a mild

solution of the Cauchy problem

?1% z(t) = O,*i(:) + e*v(t). i(o) =g

wie) = B2

* *
(to be considered in the Hilbert spaces JJ° and ')J ).

Summarizing our situation we have to deal with the four Cauchy problems

o ™
These are related in the same manner as the semigroups S(t). ST(t), :T*(c) and
S*(t). More precisely, the Cauchy problems on the left-hand side corresponds
to the RFDE (5.1) and those on the right-hand side to the transposed RFDE (5.3).
On each side the upper Cauchy problem describes the respective equation with
the 'classical’ state concept ‘(solution segments) and the Cauchy problem
below within the dual state concept (forcing terms). A diagonal relation is

actually given by functional analytic duality theory.

The vertical relations between the four Cauchy problems above may also




ot nes

be gluci’ibed through the structural operators 3 and '5 .. In particular,
it follows from Theorem 5.9, that a:((t.) =" x(t), t 2 o, defines a mild
solution of £T* if ;t(t). t 2 0, is a mild solution of L, This fact is also
8 consequence of Theorem 5.5 together with the following relations between

the various input/output operators by means of the structural operator .3 .

Proposition 5.12

AL NN S
.g _crtg' BT-Btgt

Proof Let us first consider 3 as an operator from N ineo ‘DT*
(Proposition 5.8) and let ¢ €W . Then 9 ¢ ¢ 'b'T. and
h
'
€70 = 130120 = [ avenlen -Col = o
o
The equation BT - B* 3 * can be established analogously by the use of

Theorem 5.5 (iv) and the remaining assertions of the proposition follow by

duality. ¥Z2

* *
Finally, note that the Cauchy problems £, ZT, tT and I may also be

understood in a strong sense. In particular, if ¢ € W and

2
lo

solution x(t) of I is in fact a strong solution. This means that

u(e)g L c [o,=; Rm], then it can be shown that the corresponding mild
x(t), t 30, is a continuous function with values in ')v , that its
derivative exists as a locally square (Bochner ~) integrable function with
values in the larger space V , and that the first equation in I is
satisfied in the Hilbert space - for almost every t 2 o (SALAMON {40 ,
Theorem 1.3.4]). In order to ;ukc this rigorous, we need the fact that >
can be interpreted as a bounded operator from W to '\J\ + This means

that ") is the domain of (L when a_ is regarded as an unbounded, closed

-
operator on ')/ .




Proposition 5.13

W - 8v<a>. W - 9),T(O.T>,
™ - e Wt yaad

Proof First note that _ZT: = 3 T(QT) c ')\\T and hence
T*
31‘)11 (a ) C 821*(0-'”) = x‘l‘* (see Remark 2.3)

*
Now let £ € X7 . Then £ < % T*(Q_T*) if and only if the map
)

y — <a‘r%f ’7»-1- "M)T* ’ v € »,A)T(CLT)

. . T T, .
extends to a bounded linear functiomal on ')‘) . But ¢ € wT(a ) if and
n 2
only if  v'e W2iehno; RN, vle whiehoi &P, v0 = vl i) =0,

and &l(o) - LT'bl + CTwz; and the following equation holds for every

ve ﬂw( o5

< CLTw,p

T
=< o g
*
I h

v T -dn () €° + I VT ~vay (0 €°
o]

h

T -s)el(s)as + I VT (=s) €2 (s)ds
[+

h
o
h
*
o

-2

h

- I W T r)dn () e° + I 1T (-s)£l (s)ds
[.]

> O

. I Vo e () + v()E° - v(n)£%)as
(]

(compare the proof of Proposition 5.4). The latter expression defines a
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bounded linear functional on LJT = {ye ¥le1 € UI'Z("h.O; Rn) , 0. Wl(o))

if and only if there exists ad € Lz(o,h; Kp) such that the following

1,2

equation holds for every wz € W '"(~h,o0; \Rp) satisfying wz(o) =0

h
j v2T(=8) (£2(s) + v(8)€° - y(h)E%]ds
o

- J Wz'{-s)d(s)ds - - J wzr(-s) I d(o)dods.

o o s

* » *
This is equivalent to f & '))'T . We conclude that 'D-T = g (O.T ).

W
* * ..
Analogous arguments show that '])' = D *(Q_ ). The remaining

assertion of Proposition 5.13 follow by duality.

6, THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM

6,1 The finite time case

In the previous section we have developed two state space descriptions
for the RFDE (5.1). Moreover, we have shown that the corresponding Cauchy
problems'z“ and Z,T* both satisfy the hypotheses (Hl), (H2) and (H3) of Sectiva
2 in suitably chosen Hilbert spaces (Remark 5.10 and Remark 5.11). This
allows us to apply the results of Section 2 to the RFDE (5.1) within the
state concepts of Sub-section 5.2 . For this sake we consider the cost

functional
T

2
(6.1) TT(u) - J Nyl + oT(e) Ru(e)]de
o ®
' nxe
associated with the systems (5.1) and (5.5) where R& R is a positive

definite matrix.

Remarks 6,1 For simplicity, we assume there is no weight on the final state

x(T) respectively x(T} in the cost functional :r_r(u). Such a weight could




a

T B

, *
be introduced by means of a semi-definite operator q: &QT id ‘M)T

leading to the additional termx(t), q:‘i(c)),r* in the performance index
N3

Ir(u). However, such a term could never be of the form xT(T) Gox(:) with

sgme non-zero positive semi-definite matrix C} o‘ R™ since the map

*
£ ~— £° from xT into R " cannot be extended to a bounded linear
*
functional on ')QT .
The following result is now a direct consequence of Theorem 2.6

and Proposition 2.7.
Theoren 6.2
(i) There exists & unique strongly continuous operator family

n(t) & i(’l)'. U"*), O gt g T, such that the function w(t)¢ is continuously

differentiable in 7%} * for every ¢ &) and satisfies the equation’

£ mme + Oom(ede + w(e) Qo
(6.2) - n(e) PR B rn(e)o +@*ge =0,

=(T)¢ = 0.
(ii) There exists a unique strongly continuous operator family
Y e J R, W), 06t §T, such that the funccion Y(L)E is

: T® o gs
continuously differentisble in V‘T for every £ ¢ ) and satisfies

the equation

L pwes aTPwe + P Qe

(6.3) -P@R™ rRIRTYPwme ¢ ¢ -0,

@(r)f - 0.




i) ) € LI amd Yoe ™, Wh, 05 e,

are the solution operators of (6.2) and (6.3), then

(6.4) w(t) = Y* P()¥, o0sxtesT.

(iv) There exists a unique optimal control which minimizes the
performance index (6.1) subject to (5.1) and (5.2). This optimal

control is given by the feedback control low
u(e) =-R"? B* () x (t)
(6.5) a1 RT P x
--rIRTP %%

Where n(t) ¢ i('\?",'))*) and ¥(t) € i(‘k\,r*, }QT) are given by

(6.2) and (6.3). The optimal cost corresponding to the initial state
¢ eX is

Jpw = <o, m@e >

(6.6)

=< £, Plo)f > *'r*, x'r
where £ =’}4 ¢ ¥  is the initial state of (5.5.1).
Proof

The statements (i), (ii) and (iv) follow immediately from Theorem 2.6

*
and Proposition 2.7. In order to prove (iii), let P (t) ¢ ('))T , N ve

the unique solution of (6.3) and let w(t) & L (\], V*) be defined by (6.4).




Moreover, let ¢ & W and £: = 3¢ € V™. Ten - since s 'ei(']}r, N -

the function w(t)¢ = "4 * &(t)f. 0&+s T, is continuously differentiable

with values in"}\\,* and satisfies the following equation

afe

n(t)e + QL Nn(e)e + (IOl

- RRIRT w0 gy

A ZOTRY/ B o JOTRE- W JOL TR
-4 R OIBTIBE Bige e B¢ G o

-4 [ P +0FPore + o s

- P BT. RN JOTRYS 6* £]

=0

(See Theorem 5.5 and Proposition 5.12). Now statement (iii) follows

from the uniqueness of the solution of (6.2), VZJ

Note that an analogous relation as (6.4) has been shown in DELFOUR-LEE-

MANITIUS [14] and VINTER-KWONG [41] for RFDES with undelayed input/output -

variables.




6.2 Stabilizability and detectability

In this section we investigate the sufficient conditions (H4), (HS)

for the unique solvability of the algebraic Riccati equation (Chapter 3) in

*
the case of the systems I and IT . We will not consider these hypotheses

in their weakest form but have a look at the slightly stronger properties

of stabilizability and detectability.

Definition 6.3

(i) System I is said to be stabilizable if there exists a feedback operator

Kéf_( V., Rm) such that the closed loop semigroup SK () & i @3

defined by

t
(6.7) jK (t)e = 5 (t)e + J I(c-s) B 5K (s)¢ds
()

for t 2 o and ¢ é-v' is exponentially stable.

* : ] 3
(ii) System ZT is said to be stabilizable if there exists a feedback

operator 'XT*G 4 (NT*; Km) such that the closed loop semigroup

:):*(t) < i ('w‘r*) defined by

4
(6.8) J’KT*(:)f - S ™we . If e BT X™ ofKT"(s)ma
o

* .
for t 2 0 and f e'ls T is exponentially stable.

—




Remarks 6.4

(i) Note that the integral term in (6.7) is a bounded linear operator
from v to 1\) (Remark 5.10) and hence JX (t) is also a strongly

continuous semigroup on x and ‘)\) .

(ii) It follows from Remark (5.6) (iii) that for every t 2 h.

J’Km e d v o Lx. W,

(iii) The scability of the semigroup SK (t) is independent of the choice
of the state space V R I or '}b . In order to see this, note that
the operator /uI- Q- BX ')D - 7)' provides a similarity action
between f,( () € i(')\)) and SK (t) € f (V) it /Lx> 0 is

sufficiently large. Moreover, it follows from (ii) that the stability of
f‘( (t) on the Hilbert space 7\\ implies the stability on * and the

stability on o implies the stability on V.

(iv) The same srguments as above show that the closed loop semigroup
* * * *
KT (v) & i (W\ST ) can be restricted to a semigroup on I-_T or V“'T

and that its stability is independent of the choice of the state space

W %™ o v T
(v) Let )(T* ¢ i(,»"r*. Rm) be given and define

6.9 X-X"%e LV, ery.

Then the following equation holds for every t 2 o
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In fact, it follows from Theorem 5.5 and Proposition 5.12 that for
A
*
every ¢ e'v' the function Q(t) - 5 ‘IK(tN é 'bd T , t 2 o, defines

a solution of (6.8) with £ = 3 ¢.

(vi) Every x ™ e i ('\b’*, \Km) can be represented as

h

6.11) KM« R+ I K, (-8)£(s)ds + J Kz(-:)fz(s)ds
o -]

vhere Ky(-) &€ L2h,0; R™P), K () € v 2 (n,0i R™™ and K = K, (0). '
Moreover, let us again suppose that 'X =- ‘Xﬂsand consider the control law

R i

! we) = XY k@

h=t
- Kox(t) + I J qs-x)dn(t)x(t-s)ds
o‘o

(6.12) h T
+ J J Kz(s-r)dy(r)x(t-s)ds

o’o

h T
n I J Kl(s-t)da(‘r)u(t-s)ds

0’0

for aysten'(s.l). Then it follows from Equation (6.7) and Theorem 5.9

1’2(09“5 \Rn) ’
oc

. . 2 n
that for every solutiom pair x(:) €& Lloc(-h,-; R) n Hl

2

u() € Lloc

(o,2; ™) of (5.1), (5.2), (6.12) the corresponding state

x(c) = (x(c).xt.u:)sx at time t 2 o is given by




(6.13) x(t) = JK (t)¢

By (6.10), this implies that ;(t) - 3 x(t) & ir* is given by
x(t) = ;KT*(t)S' ¢ .

(vii) 1f Xe i(v‘. Rm) is given by (6.9) then the exponential stability

* *
of ;K‘ (t) on X is equivalent to that of SKT (t) on & ™
fact , it follows from Equation {6.7) and Theorem 5.9 that

6.16) range ST C range F

and hence Equation (6.10) shows that the stability of Ix(t) implies rhat

of .YKT*(t). The converse implication is a consequence of the fact that

‘IK (£)¢ = (x(t),x ,u.) and

x) = [ £ ©0F00°% uww = KT LMo, t2o,

for every solution pair x(t),u(t), t2-h, of the closed loop system (5.1),

(5.2), (6.12) with ¢ & X .

Having collected the basic properties of the feedback semigroups JK (t)

and JKT*(t), we are now in the position to prove the follewing stabilizability

criterion.

Theorem 6.5

The following statements are equivalent.

(i) System I is stabilizable.
(ii) There exists a feedback cperator ¢< € i( 'V\), iKn) such that the
closed loop semigroup SK (e) € f (W) defined by (6.7) for t 2 o

and ¢ 6')\\ is exponentially stable.

(iii) System T is stabilizable.




o =

o .
(iv) There exists a feedback operator XT* € i('v"r*, B ) such that

the closed loop semigroup JKT*(t)e £ (])’T*), defined by (6.8)

*
for t 20 and £ € '\)T is exponentially stable.

{(v) For every A € ¢ N Re/\ao,

rank [A(A), B(ex')] = n.

Proof

The implications " (iii) = (i) = (ii)" and "(iii) = (iv)" follow from
Remark 6.4.

Now we will prove that (v) implies (iii). Note that it has been showm
in SALAMON { 40 , Theorem 5.2.11 and Corollary 5.3.3] that (v) implies
the existence of a stabilizing control law of the form {6.12) for the system
(5.1) where K1(°) € wl’zl-h,o; \Km], K = Kl(o) and Kz(t) = 0. This means
that every solution pair x(t), u(t), t 2 -h, of (5.1), (5.2), (6.12) with
$ € X tends to zero with an exponential decay rate which is independent of

* *
¢. This shows that the semigroup QFKT (t) is stable on XT (Remark 6.4

'
(vi)) and hence on W) 1 (Remark 6.4 (iv)).

It remains to show that (ii) and (iv) imply (v). For this sake assume
that there exists a A € € , Re A 2 o, and 2 non-zero vector xo e C n
such that x:A(A) = 0 and xza(e)") = 0 and define y: = (xo, eA'xO.O) € ‘Z&)T-
Then it is easy to see that arw =Xy, B T\p = 0 and hence
Q* S*w =2 3*% & *S *‘0 - 0 (Theorem 5.5 and Proposition 5.12). Now
equation (6.8) and (6.7) show that quT(t)w - fr(t)w - euw and
S’: (c) 3*& - J *(t) g*w = eug*w for every XT* e;f( )}T*. Rm)
and every X ¢ L(N, Rm). Since ¢ $ o and g *v ¥ o, this shows that
(ii) and (iv) are not satisfied. KZA

The next result is obtained by dualising Theorem 6.5.
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Corollary 6.6

The following statements are equivalent

(i) System I is detectable in the sense that there exists an output
injection operator 'R’ e,i( Rp,_))') such that the closed loop semigroup
,f,a (t) € ;f(])) generated by O. + 3{ F: ')\) - ))' is exponentially stable.
(ii) System ZT* is detectable in the sense that there exists an output

* *
injection operator J{T € i ( |Rp . 'L)T ) such that the closed loop semi-

group J’g{r*(:) € i (NT*) generated by arﬁ + }[T* 6‘"; ]}‘T* - ‘]AT*

is exponentially stable.

(iii) Porevery A € € , Rel 2 o0,

A (2D
rank e = n

Ce™

Note that jm (v) e i (v) satisfies the integral equation.
_ t )
(6.15) Jm(t)o - J () + J J (t-s) 3{ gj(s)ods
o &

for every t 2 0o and every ¢ :")\.) (see SALAMON [40 , Theorem I.3.9])
and hence can be restricted to a semigroup on X if 3{'6 f( Rp , % ).
At the end of this section we give a concrete representation of the output
injection semigroup j;( () ¢ i()&) by means of a closed loop functional

differential equation. For this sake note that every %e f( IEP. X)

can be represented as
6.16) My = ayhCy, uen)ed,  yel,

axp 2 nxp 2 mxp
where H €R 7, B, (-) @ L7(-h,0; R™), Hy() @ L7C-h,05 R ).
Moreover, we introduce the abbreviating notation

o
Hi"Oz('r) - I Hi(r-o)¢2(a)d|. “h€t5$o0,
T
for i = 1,2 and 02 '3 Lz(-h.O; \kp)-
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Theorem 6.7

W Lee x() e L2 (-h= R") n W2(0,a; R™) satisfy the RFDE

6.17)  x(t) = L(x #H*y ) + Blu sl sy ) + H y(c)
where u(-) & Lioc('h.-’; Rm) and y(-) ¢ Lioc(-h.ﬂ'; RP). Then

(6.18) x(t) = (x(t),xt + Hl*y:,ut + Hza‘yt)éx s t 3o,

is given by the variation-of-constants formula

t t
(6.19) x(t) = J(:)?c(o) +J J‘(t-s) Bu(s)ds + J f (:-g);‘ y(s)ds.
° ()

< 2 : 1,2
(1) Let x(*) € Ly (hye; RY) n Wii(o,= R™) and

2

locCHe™s \RP) satisfy the equations

Y(-)elL

6.20;1) x(t) = Lix, +lay ) + B(Hzy ) + H y(t),

(6.20;2) y(t) = c(xt+H1*y:)' t 2o,
and let x(t) €X ., t > o be defined by (6.18) with u(t) = o. Then

(6.21) x(c) = \fg{mi(o)

Proof In order to prove statement (i), let us first assume that y(t) = o
for t > o and define z(t) € Rn. v(t) € Qm for t 2 -h by

z(t) = x(t), v(t) = u(t) for t 2 o and
o o
z(t) = x(t) + J Hl(‘r-o)y(o)da » v(T) = u(r) + J Hz(f—o)y(q)da .
T T

for -h £ t £ o. Then it is easy to see that x(t) = (z(t),zt,vt) for all

t 2 o and hence the following equation holds




x(t) = x(t)

L(xtﬂll*yt) + B(utﬂlz*yt) + Hy(t)

th¢8vt, t 2 o.

This implies

x(t)

t
(z(t),z,v) = V(0% + If(t-s) Bu(s)ds.
°
Secondly, let u(t) = o and x(1) = o, y(1) = o for -h s T § o. Moreover,
let 2(t) € qu’ . V() € Rmxp’ t ¢ -h, be the unique solution of
:’.(t) - th + th corresponding to the imput V(t) = 0, t 2 o, and the initial

condition Z(o) = H, ) Z(1) = Hl(r),v(r) - Hz(r), ~h £ 1 < o. Then

6.2 @e,z,v) Lo e LR, 20

Now let us define

t

z(t) = J Z(t-s)y(s)ds, z(1) = o,
o .
t

z(t, 1) -J Z(t-s+1)y(s)ds,
o

v(e,T) = J V(t-s+1)y(s)ds,
o

for t 2 0 and -h § t € o. Then we obtain

2(t, ) =z + Hry € e (~h,0; lk“)
(6.23)

V@) =iy, € LP-h,0 RD)

and hence




t

z(t) = J Z(t-s)y(s)ds + Z(o)y(t)
o

h t
-I dn(r)[ Z(t~s-1)y(s)ds

(] o

h t

+ J d8 (1) J V(t-s-1)y(s)ds + Z(o)y(t)
° o

- L(ztﬂll*yt) + B(Hz*yt) + HOY(I)

for t 2 o. This implies that x(t) = z(t) for t 2 ~h, Thus it follows from

(6.22) and (6.23) that
x(t) = (x(t),x, + Hiny sBpay )

- (z(t),Z(:v')oV(:o’))

t

i Jo(z(t-s).Zt_s’Vt_s)y(s)ds

t
= J f (t-s) }( y(s)ds.
)

This proves statement (i)

In order to prove statement (ii), let us assume that
x() €2 (hei BRY o W02 (0,0 RY and y() - L5 (chyem; RP)
loc loc loc
satisfy (6.20) and that x(t) € 9€ is defined by (6.18) with u(+) = 0.

g Moreover suppcse that § = ;((0)4'0 . Then y(t) , t 20, satisfies the

Volterra integral equation




Cy(e) = C(xt + Hl* yt)

h

t
'I d v(1) 01 (t-1) I dy(t) x (e~1)
t o

t t
+ I [f d v(t) L (l—t)] y(t-s)ds, t 2 o,
o s

with forcing term in W 1'2 (0, =; [Lp). This implies that
oc

y() ¢ Wi;: (0, =; \KP) and hence, by (i),

t
x(g) = J(t) x(0) + [f(t-s)}{y(:)du 3 FD - Q{Q),
]

for every t 2 o. Moreover it follows from a general semigroup theoretic

- . . . r . e
result that x(t) is continuously differentiable in ’l and satisfies

4 2o = QL + Uy = (Q+ HEr»w, 20

This proves (6.21) for the case x(o) & 'lb . In general (6.21) follows
frum the fact that both sides of this equation depend continuously on the
initial functions (x(o),xo,yo) (4 xt of (6.20).. (for existence and unique-

ness results for this type of equations see SALAMON [40, section 1.2]). 3

Finally, note that the transposed equation of (6.20) takes the form




6.261) 1) =Tz + ¢ vy,

§

T
I H.;(-a)dBT(t)z(ti's-r)ds
°

v(t) = g:z(:) + H.{ (-s)d')}‘r('r)z(tﬂ-t)ds

(6.24;2) +

+
ON—pF' O\

T
I Hf (-S)dYT(T)v(vs-r)ds .
o

This is nothing more than the transposed RFDE (5.3) with a control law which

is analogous to (6.12).

6.3. The infinite time case

In this subsection we consider the performance index

(6.25) Jw -I CIlyee 2%+ uf (0 Ru(e) ae
-}

. .
associated with the Cauchy problems f and tT vhere R € Rm is a

positive definite matrix.

Combining the results of section 3 (Theorem 3.3 and Theorem 3.4)
and of the previous subsection (Theorem 6.5 and Corollary 6.6) we obtain

the facts which are summarised in the theorem below.

Theorem 6.8

(i) 1f

(6.26) rank [A(2), B(e™]] = n wre €, Rer 30,

-

then there exist positive semi-definjite operators v & i('v . '\)*) and

\T* T . .
99 i(‘k .“ ) satisfying the algebraic Riccati equations.




(6.27) v + Q0 + mQLe - BRI R*ng +G*ge = 0
(#&1\)\) respectively

@  preqps + 9T - PRV W e0f Trm0

-
(fe'})-r ). The minimal solutions = of (6.27) and z? of (6.28) satisfy

the relation

(6.29) LI R
(i) 1f (6.26) is satisfied, then there exists a unique optimal comtrol
u(e) & Lioc (o, =; Qm) which minimizes the performance index (6.25)
subject to (5.1), (5.2). This optimal control is given by the feedback
law

-1 fad

u(t) = -R B*ﬂx(t)

-1pT >

(6.30) = -R B P

- - R—IBTP ; ‘e)

where w respcect:imalyf7 is the minimal solution of (6.27) respectively (6.28).

The optimal cost corresponding to the initial state ¢ ¢ % is given by

(6.31) Jw = <4,7> = <, Pe>

where f = 5 ¢ € %T* is the initial state of (5.5).
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(iii) 1f

(6.32) rank [‘ Q) ] an VAeC, ReA 3 O, then the algsbraic
C(e

Riccati equation (6.27) respectively (6.28) has at most one self adjoint,
noanegative solution v €  (V,VU*) respectively ¥ ¢ i('l}.”, nYH.
Moreover, if ¥ respectively ¢ is such a solution, then the closed loop
semigroup \r '(t) € .f (Y), generated by Q -p'.l.l/J *z respectively
\f;*(t) ¢ I ('QT*) generated by Q_ﬂ -Pna-lﬂrf is exponentially stable.

- 985 ~




REMARKS ON THE LITERATURE

The linear quadratic control problem for RFDEs with undelayed
i/o-variables has been cxtensively: studied by many authors, see e.g.
KUSHNER-BARNEA [30), ALEKAL-BRUNOVSKY-CHYUNG-LEE [ 1], CURTAIN { 81,
DELFOUR-MITTER [11], MANITIUS [36), DELFOUR-McCALLA-MITTER (13], DELFOUR-
LEE-MANITIUS [14], DELFOUR [15], BANKS~BURNS { 3]. First results on systems
with a single point delay in the state and control variables can be found
in KOIVO-LEE {27], KWONG [28] and some further ideas in this direction in
ICHIKAWA [22), [23]). However, an evolution equation approach to this
problem has only recently been developed by VINTER and KWONG [41]) for FFDEs
with distributed delays in the control variable. This aspproach has been
generalized to RFDEs with general delays in the state~and-control variables
by DELFOUR [16], [17], [18]). Some results on the finite time linear quadratic
control problem for RFDEs with a single point delay in state, control ;l:d
observation can be found in the recent paper of LEE [33] and FERNANDEZ-
BERDAGUER-LEE (20]. However, they use different methods and have much more

restrictive assumptions.

We have derived the solution to our infinite time optimal control problem
via the positive semi-definite solution fﬁ f(')bﬂ,')\)‘r) ‘respectively
" e f(v ,'\)‘*) of the algebraic Riccati equation (6.28) respectively (6.27).
Therefore it would be extremely in:;msting to have a detailed characterization
of the structure of the operators P and x which arises fro;l the product space
structure of the state space. In the case of RFDEs with state delsys only
such a characterization has been given in KWONG {29]; VINTER-KWONG [41] for the
operator ¥ and in DELFOUR McCALLA-MITTER [13] for the operator ¥ (note that
in this special case the operators ¥ and » may be definad on the state space
'12 = Kn x Lz[-h.o; kn] ). An snalogous result for general systeas of
the type (5.1) seems to be unknown since the Riccati equations (6.27) and

(6.28) are spparently new.

- 96 ~




[

(2)

(31

(4]

(5]

(6l

(n

(8)

9]

(10}

(1)

REFERENCES

Y. ALEKAL, P, BRUNOVSKY, D.H. CHYUNG and E.B. LEE.

"The quadratic problem for systems with time delays". IEEE Trans.
Autom. Control AC-16 (1971), 673-688.

A.V. BALAKRISHNAN.

"Boundary control of parabolic equations: L-Q-R theory". Proc. V.
Intl, Summer School, Central Inst. Maths. Mech. Acad. Sci., GDR,
Berlin, 1977,

H.T, BANKS and J.A. BURNS.

"Hereditary control problems: numerical methods based on averaging
approximations". SIAM J. Control 16 (1978), 169-208.

C. BERNIER and A. MANITIUS.

"On semigroups in A" x P corresponding to dszerential equations
vith delays". Can. J, Math. 30 (1978), 897~914.

J.G. BORISOVIC and A.S. TURBABIN.

."On the Cauchy problem for linear nonhomogeneous differential

equations with retarded argument”. Soviet Math. Doklady 10 (1969),
401-405.

Je.A. BURNS and T.L. HERDMAN.

“Adjoint semigroup theory for a class of functional differential
equations”. SIAM J. Math. Anal. 7 (1976), 729-745.

J.A. BURNS, T.L. HERDMAN and W. STECH,

"The Cauchy problem for linear functional differential equations”.
Proc. Conf. Integral and Functional Differential Equations, Marcel
Dekker, New York, 1981.

R.F. CURTAIN,

"The infinite dimensional Riccati cquutton with applications to
affine hereditary differential systems”. SIAM J. Control Opt. 13
(1975), 1130~1143. _

R.F. CURTAIN and A.J. PRITCHARD.

"Infinite dimensional linear systems theory”. Lecture Notes in
Control and Information Sciences, Vol. 8, Springer-Verlag, Berlin,
1978.

R. DATKO.

"Neutral autonomous functional equations with quadratic cost". SIAM
J. Control 12 (1974), 70-82.

R. DATKO.

“Extending & theorem of A.M. Lispunov to Hilbert space”, J. Math.
Anal. Appl., 32 (1970), 610-616.

-97 -

e e e [ e B e O it I, OO
St
A ———



(12)

(13]

(14)

(1s}]

(16}

(7

(18]

f19]

(20]

(21]

(22]

M.C. DELFOUR and S.K. MITTER.

"Controllabilicty, observability and optimal feedback control of
affine hereditary differential systems”. SIAM J. Control 10 (1972),
298-328.

H.C.- DELFOUR, C. McCALLA and S.K. MITTER.

“Stability of the infinite time quadratic cost problem for linear
hereditary differential systems”. SIAM J. Control 13 (1975), 48-88.

M.C. DELFOUR, E.B. LEE and A. MANITIUS.

" "F-reduction of the operator Riccati equation for hereditary

differential systems”. Automaticalsd (1978), 385-395.

M.C. DELFOUR.

"The linear quadratic optimal control problem for hereditary differential
systems: theory and numerical solution”. Appl. Math. Optim. 3 (1977),
101-162.

M.C. DELFOUR.

"Status of the state space theory of linear hereditary differential
systems with delays in state, control and observation". 1In 'Analysis
and Optimization of Systems', A. Bensoussan and J.L. Lions, eds.,
83-96, Springer-Verlag, Berlin, Heidelberg, New York, 1980.

M.C. DELFOUR.

"The linear quadratic optimal control theory for systems with delays
in the state and control variables". Proceedings VIII IFAC World

- Congress, Kyoto, Japan, August 1981.

M.C. DELFOUR.

"The linear quadratic optimal control problem with delays in the state
and control variables: A state space approach”. Centre de Recherche

de Mathématiques Appliquées, Universit€ de Montréal, CRMA-1012, March

1981.

M.C. DELFOUR and A, MANITIUS.

"The structural operator F and its role in the theory of retarded
systems".

Part 1: J. Math. Anal. Appl. 73 (1980), 466-490.

Part 2: J. Math. Anal. Appl. 74 (1980), 359-381.

F.M. . FERNANDEZ-BERDAGUER and E.B. LEE.

"Generalized quadratic optimal feedback controllers for linear
hereditary systems”". Dpt. Electrical Engineering, University of
Minnesota, 1983.

D. HENRY,

"Linear autonomous neutral functional differential uquations”.
J. Diff, Equations 15(1974), 106-128.

" A. ICHIKAWA,

"Generation of semigroups on some product space with application
to evolution equations with delay”. Control Theory Centre Report
No. 52, University of Warwick, 1976,




A. ICHIKAWA.

“Optimal quadratic control and filtering for evolution equations
with delay in control and observation". Control Theory Centre
Report No. 53, University of Warwick, 1976.

(24] A.E. INGHAM.

"Some trigonometrical inequalities on the theory of series”.
Math, Zeitschr. 41(1936), 367-379.

[25] K. I70.

"Linear functional differential equations and control and estimation
problems”., Ph.D. Dissertation, Washington University, St. Louis,

1981.

[26] T. KATO,
"Perturbation theory of linear operators”. Springer-Verlag, New
York, 1966.

[27) H.N. KOIVO and E.B. LEE.

“Controller synthesis for linear systems with retarded state and
control variables and quadratic cost". Automatica 8 (1972), 203-208.

(28] R.H. KWONG.

"A stability theory of the linear—-quadratic-Gaussian problem for
systems with delays in state control and observation". SIAM J. Control
Opt. 18(1980), 49-75.

[29] R.H. KWONG.

"A linear quadratic GCaussian theory for linear systems with delays
in the state, control and observations". Report 7714, Systems and
Control Group, University of Toromto, Canada, 1977.

[30] H.J. KUSHNER and D.I. BARNEA.

"On the control of 'a linear functional differential equation with
quadratic cost". SIAM J. Control 8 (1970), 257-272.

[31) I. LASIECKA and R. TRIGGIANI.
"Dirichlet boundary control problem for parabolic equations with
quadratic cost: analyticity and Riccati feedback synthesis". SIAM
J. Control, Vol. 21 (1983), 41-67.

[32) I. LASIECKA and R. TRIGGIANI.

"An L2 theory for the quadratic optimal cost problem of hyperbolic

equations with control in the Dirichlet boundary conditions". Proc.
Conf. on Distributed Parameter Systems, Vorau, Pitman, London, 1982.

(33) E.B. LEE.

“Generalized quadratic optimal controllers for linear hereditary -
systems”"., IEEE Trans. Autom. Coantrol AC~-25 (1980), 528-531..

(34) J.L. LIONS.

"Optimal control of systems governed by partial differential equations”. ?
Springer-Verlag, New York, 1971.

=z

-99 ~




(3s]

(36]

(37

(38]

{391

{40}

(s1]

{42}

A, MANITIUS.

”éotpl‘:cncu and F-completeness of eigenfunctions associated with
retarded functional differential equations”. J. Diff. Equations 35
(1980), 1-29.
A. MANITIUS.

"Optimal control of hereditary systems". In 'Control Theory and
Topics in Functional Analysis', Vol. III, 43-178, Intermational
Atomic Energy Agency, Vienna, 1976,

R.K. MILLER.

"Linear Volterra integro~differential equations as semigroups”.
Funkecial, Ekvac 17 (1974), 39-55.

L. PARDOLFI.

"Scabilization of neutral functional differential equations”.

J. Opt. Theory Appl., Vol. 20 (1976), 191-204.

D.L. RUSSELL.

“Closed-loop eigenvalue specification for infinite dimensional
systems: augmented and deficient hyperbolic zases". MRC, University
of Wisconsin-Madison, TSR 2021, 1979.

D. SALAMON.

"  Control and observation of neutral systems”. RNM 91,
Pitman, London 19%94.

R.B: VINTER and R.H. KWONG.

“The finite time quadratic control problem for linear systems with
state and control delays: an evolution equation approach”. SIAM
J. Control 19 (1981), 139-153.

D. WASHBURN.

"A semigroup theoretic approach to modelling of boundary input
problems”. Proc. IFIP Conf. on Modelling and ldentification of
Distributed Parameter Systems, Roms 1976.

-lw-




r——— e —————

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered

REPORT DOCUMENTATION PAGE
Y. REPORY NUMBER . GOVY ACCESMON MO

2624

READ INSTRUCTIONS
COMPLETING FORM

BEFORE ‘
3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
The Linear Quadratic Optimal Control Problem for

and Output Operators

Infinite Dimensional Systems with Unbounded Input |

5. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific
re n riod

6. PERPORMING ORG. REPORT NUMBER

. AUTHOR(®)
A. J. Pritchard and D, Salamon

- CONTRACY OR GRANT NUNBSERN(S) |

DAAG29-80-C-0041
and MCS-8210950

5. PERFORMING ORGANIZATION NAME AND ADORESS
Mathematics Research Center, University of

610 Walnut Street Wisconsin
Madison, Wisconsin 53706

. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Work Unit Number 5 -~
Optimization and Large Scale

Systems

15. CONTROLLMNG OFFICE NAME AND ADDRESS

* see below

12. REPORT DATE
January 1984

3. NUMBER OF PAGES
00

T3 WMONITORING AGENCY NAME & ADDRESS(if different from Caontrolling Ottice)

15, SECURITY CLASS. (of thia report)

UNCLASSIFIED
M8a DECLASSIFICATION/ DOWNGRADING — |
SCHEDULE

[16  GISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, It dilferent from Report)

19. SUPPLEMENTARY NOTES
* U. S. Army Research Office

P, O. Box 12211
Research Triangle Park
North Carolina 27709

National Science Foundation
Washington, D.C. 20550

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)

Linear quadratic optimal control, infinite dimensional Riccati equation,
unbounded control and observation, retarded systems,

control for a linear infinite dimensional system
is that;

point observation, input/output delays, and

20. ABSTRACT (Continue on reverse side if y and identify by dblock number)
Part I of this paper deals with the problem of designing a feedback

quadratic cost functional is minimized, The essential feature of this work

a) it allows for unbounded control and observation, i.e, boundary control,

in such a way that a given

DD ," 55" 1473  =zoimion oF 1 nov ¢8 13 ossoLETE

et o . . VISR A LA AR A e T RN 1

R

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




20. ABSTRACT (cont.)

b) the general theory is presented in such a way that it applies to both
parabolic and hyperbolic PDEs as well as retarded and neutral FDEs.

In Part II the paper develops a state space approach for retarded systems
with delays in both input and output. A particular emphasis is placed on the
development of the duality theory by means of two different state concepts.
The resulting evolution equations fit into the framework of Part I.







